
Constructing new blocks in Scicos

Scicos Team

March 3, 2009

Contents

1 Introduction 3

2 Scicos data structures (editor level) 3
2.1 Scicos block 4
2.2 Scicos graphics 5
2.3 Scicos model 6
2.4 Utilities Scilab functions 9

2.4.1 getvalue 9
2.4.2 set_io 9

3 Scicos data structures (simulator level) 10
3.1 Scicos block type 10
3.2 Scicos block structure of a C computational function (type 4) . 11

3.2.1 Inputs/outputs 12
3.2.2 Events 16
3.2.3 Parameters 17
3.2.4 States and work 22
3.2.5 Zero crossing surfaces and modes 26
3.2.6 Miscellaneous 27

3.3 Utilities C macros 28
3.3.1 Inputs/outputs 28
3.3.2 Events 29
3.3.3 Parameters 29
3.3.4 States and work 30
3.3.5 Zero crossing surfaces and modes 30
3.3.6 Miscellaneous 30

3.4 Utilities C functions 31
3.5 Scicos block structure of a Scilab computational function (type 5) 32

3.5.1 Inputs/outputs 33
3.5.2 Events 33
3.5.3 Parameters 34
3.5.4 States 34
3.5.5 Zero crossing surfaces and modes 34
3.5.6 Miscellaneous 35

3.6 Utilities Scicos functions 35
3.7 Use of flags 38

1

List of Tables

1 Scicos block data structure fields 4
2 Scicos graphics data structure fields 5
3 Scicos model data structure fields 6
4 Scicos block type 10
5 C block structure definition 11
6 Editor/C data type number correspondence table. 20
7 Inputs/outputs C macros 28
8 Events C macros 29
9 Parameters C macros 29
10 States and work C macros 30
11 Zero crossing surfaces and modes C macros 30
12 Miscellaneous C macros 30
13 Scilab block structure definition 32
14 Arguments of the function getscicosvars 37

2

1 Introduction

Scicos (www.scicos.org) is a tool for modeling and simulating dynamical systems. Scicos 4.2.1 is distributed with
scilabgtk-4.2 available for download fromwww.scicos.org/downloads.html andwww.scilabgtk.org .

The graphical editor in Scicos can be used to construct models using blocks available in Scicos palettes. New
blocks can be constructed based on existing blocks using theSuper Block construction and masking, however, in
some situations users may require basic blocks not available in Scicos palettes. Such new blocks can be constructed
in Scicos but require a good understanding of the way Scicos works and the data structures used. This document will
provide all the information needed for constructing new basic blocks.

A Scicos block is defined via two functions: an interfacing function expressed in Scilab language and a compu-
tational function written in C or Scilab. The interfacing function is used during model construction by interacting
with the block diagram editor. It contains routines for initializing the block data structure, handling the GUI, etc. The
computational function is used during simulation and contains the routines for computing the output, the state, etc.
Each function deals with a different block data structure.

2 Scicos data structures (editor level)

Block data structures at the editor level are handled by block interfacing functions in Scicos. Such a function has the
following skeleton:

function [x,y,typ]=my_interfunc(job,arg1,arg2)
x=[];y=[];typ=[];
select job
case ’plot’ then

standard_draw(arg1)
case ’getinputs’ then

[x,y,typ]=standard_inputs(arg1)
case ’getoutputs’ then

[x,y,typ]=standard_outputs(arg1)
case ’getorigin’ then

[x,y]=standard_origin(arg1)
case ’set’ then

x=arg1; //in ’set’ x is the data structure of the block
graphics=arg1.graphics;
exprs=graphics.exprs;
model=arg1.model;

while %t do
[ok,...,exprs]=getvalue(’Set block parameters’,....,e xprs)
if ~ok then break,end
...
[model,graphics,ok]=set_io(model,graphics,in,out,.. .

clkin,clkout,in_implicit,out_implicit)
...
if ok then

graphics.exprs=exprs;
x.graphics=graphics;
x.model=model
break

end
end

3

case ’define’ then
model=scicos_model()
model.sim=list(...)
model.in=...
...

exprs=string(in)
gr_i=’xstringb(orig(1),orig(2),’’Block’’,sz(1),sz(2),’’fill’’)’
x=standard_define([2 2],model,exprs,gr_i)

end
endfunction

The input arguments of this function arearg1 , the data structure of the block, andjob , which is an input flag.
What the output arguments,x , y andtyp , return depend on the input flag. In most cases, forjob ’plot’ (initial draw),
’getinputs’ (position and type of input ports), ’getoutputs’ (position and type of output ports) and ’getorigin’ (initial
shape of block) default functions (standard_draw(), standard_inputs(), standard_outputs() and standard_origin()) are
used. The main work is done in the ’define’ case where the initial model and the layout of the block are defined, and
in the ’set’ case, where the interfacing function handles the model update during used interaction using the functions
getvalue() and set_io().

2.1 Scicos block

Fields Description Type/size Example
graphics Block graphic data structure mlist graphics=scicos_graphics()
model Block model data structure mlist model=scicos_model()
gui Name of the interfacing function string gui=’Myinterf’
doc Block’s documentation. list of size 2 doc=list(docfun,doc)

Table 1: Scicos block data structure fields

The basic structure that defines a Scicos block is a tlist thatincludes the fields: graphics, model, gui and doc.

• graphics: Mlist including the symbolic parameters, the graphical information concerning the layout of the
block, and in general all the information needed at the editor level.

• model: Mlist including information needed for the compilation and simulation such as numerical parameters,
the name of the computational function, port sizes, etc.

• gui: A string containing the name of the interfacing function associated with the block.

• doc: Field used for the documentation of the block.

4

2.2 Scicos graphics

Fields Description Type/size Example
orig Coordinate of block origin. vector of size 2 graphics.orig=[1,1]
sz Size of block. vector of size 2 graphics.sz=[20,30]
flip Block orientation. boolean graphics.flip=%f
exprs Formal expression of block parameters. vector of strings graphics.exprs=["1.4";...

sci2exp([5.1,5])]
pin Link number connected to the input port. vector –
pout Link number connected to the output port. vector –
pein Link number connected to the event input port.vector –
peout Link number connected to the event output port.vector –
gr_i Graphic instructions. vector of strings –
id Identification label. string. graphics.id=["ScopeA"]
in_implicit Type of input port. vector of strings graphics.in_implicit=["E";"I"]
out_implicit Type of output port. vector of strings graphics.out_implicit=["I";"I"]

Table 2: Scicos graphics data structure fields

Object including graphical information about the the layout of the block.

• orig: A row vector of double [xo,yo], where xo is the x coordinate of the block origin and yo is the y coordinate
of the block origin. [xo,yo] is the coordinate of down-left point of the block shape.

• sz: A row vector of double [w,h], where w is the block width and h the block height.

• flip : A boolean that sets the block orientation. If true the inputports are on the left of the box and output ports
are on the right. If false the input ports are on the right of the box and output ports are on the left.

• theta: A double that sets the angle of the Scicos object. This valueis in degree and is included in [-360,360].

• exprs: A column vector of strings including formal expressions used in the dialog box of the block.

• pin: A column vector of integers. pin(i) is the number of the linkconnected to the ith regular input port (counting
from one), or 0 if this port is not connected.

• pout: A column vector of integers. pout(i) is the number of the link connected to the ith regular output port
(counting from one), or 0 if this port is not connected.

• pein: A column vector of integers. pein(i) is the number of the link connected to the ith event input port
(counting from one), or 0 if this port is not connected.

• peout: A column vector of integers. peout(i) is the number of the link connected to the ith event output port
(counting from one), or 0 if this port is not connected.

• gr_i: A column vector of strings including graphical expressions to customize the icon block shape. This field
may be set with Icon sub_menu.

• id: A string including an identification for the block. The string is displayed under the block in the diagram.

• in_implicit : A column vector of strings including ’E’ or ’I’. ’E’ and ’I’ stand respectively for explicit and
implicit port, and this vector indicates the nature of each input port. For regular blocks (not implicit), this vector
is empty or contains only "E".

• out_implicit : A column vector of strings including ’E’ or ’I’. ’E’ and ’I’ stand respectively for explicit and
implicit port, and this vector indicates the nature of each output port. For regular blocks (not implicit), this
vector is empty or contains only "E".

5

2.3 Scicos model

Fields Description Type/size Example
sim Name/type of the computational function. list of size 2 model.sim=list(’tows_c’,4)
in First dimensions of regular input ports. vector of size nin model.in=[1;2]
in2 Second dimensions of regular input ports.vector of size nin model.in2=[3;1]
intyp Data type of regular input ports. vector of size nin model.intyp=[1;8]
out First dimensions of regular output ports. vector of size nout model.out=[1;2]
out2 Second dimensions of regular output ports.vector of size nout model.out2=[3;1]
outtyp Data type of regular output ports. vector of size nout model.outtyp=[1;8]
evtin Size of event input ports. vector of size nevin model.evtin=[1;1]
evtout Size of event output ports. vector of size nevout model.evtout=[1;1]
state Initial condition of continuous state. vector of size nx model.state=[0;0.1;-5.1]
dstate Initial condition of discrete state. vector of size nz model.dstate=[0;0;-1]
odstate Initial condition of object discrete state. list of size noz model.odstate=list([0;0;-1],...

int32(3))
ipar Integer parameters. vector of size nipar model.ipar=[1;2;-6]
rpar Real parameters. vector of size nrpar model.rpar=[0.8;2.1;-6.55]
opar Object parameters. list of size nopar model.opar=list([0.8;2.1]„...

1+2*%i)
blocktype Type of the block. character model.blocktype=’d’
firing Initial date of output events. vector of size nevout model.firing=[-1;0.1]
dep_ut Scheduling properties. boolean vector of size 2 model.dep_ut=[%t;%f]
label Label of the block. string model.label=[“My label“]
nzcross Number of zero crossing. integer model.nzcross=1
nmode Number of modes. integer model.nmode=0
equations Modelica block definition. list of size 4 model.equations=modelica();

model.equations.model=...
’Capacitor’

model.equations.inputs=’p’
model.equations.outputs=’n’
model.equations.parameters=...

list([’C’,’v’],list(C,v),[0,1])

Table 3: Scicos model data structure fields

Scicos model is a mlist containing block information used for the compilation and simulation.Scicos model contains
the following fields:

• sim: A list containing two elements. The first element is a stringcontaining the name of the computational
function (C, Fortran,or Scilab). The second element is an integer specifying the type of the computational
function. Currently type 4 and 5 are used, but older types continue to work to ensure backward compatibility.
For some older case,sim can be a single string and that means that the type is supposedto be 0.

• in: A column vector of integers specifying the number and sizesof the first dimension (number of rows) of the
regular input ports (in most cases ports are numbered sequentially from the top to the bottom on one side of the
block). If no input port existsin==[] . The size can be negative, equal to zero or positive:

– If a size is less than zero, the compiler will try to find the appropriate size. If two ports (input or output)
have the same negative size (say -1) then the compiler forcesthem to have the same value. Idem for two
sizes associated with the same port. For example to force an input to be a square matrix of arbitrary size,
the row and column sizes can be set to -1.

– If an input row size is equal to zero, the compiler assumes it is equal to the sum of all row sizes of the
block outputs. Only used in special blocks such as DEMUX.

– If a size is greater than zero, then it corresponds to the actual size (number of rows).

• in2: A column vector of integers specifying the second dimension (number of columns) of the regular input
ports of the block.in andin2 give the row and column dimension of the inputs. For compatibility, in2 can
be empty ([]). This means the dimensions of input ports are[in,1] The size can be negative, equal to zero or
positive. See the case ofin for details.

6

– If a size is less than zero, the compiler will try to find the appropriate size. See the case ofin for details.

– If an input column size is equal to zero, the compiler assumesit is equal to the sum of all column sizes of
the block outputs.

– If a size is greater than zero, then it corresponds to the actual size (number of columns).

• intyp : A column vector of integers specifying the types of regularinput ports. It has the same size asin . The
types of regular input ports can be

– 1: real matrix,

– 2: complex matrix,

– 3: int32 matrix,

– 4: int16 matrix,

– 5: int8 matrix,

– 6: uint32 matrix,

– 7: uint16 matrix,

– 8: uint8 matrix.

• out: A column vector of integers specifying the number and sizesof the first dimension (number of rows) of the
regular output ports. If no output port existsout==[] . The size can be negative, equal to zero or positive:

– If a size is less than zero, the compiler will try to find the appropriate size. See the case ofin for details.

– If an output row size is equal to zero, the compiler assumes itis equal to the sum of all row sizes of the
block inputs. Only used in special blocks such as MUX.

• out2: A column vector of integers specifying the second dimension (number of columns) of regular output
ports. For compatibility, this dimension can be empty ([]).This means that the dimensions of output ports will
be[out,1] . A size can be negative, equal to zero or positive:

– If a size is less than zero, the compiler will try to find the appropriate size. See the case ofin for details.

– If a size is equal to zero, the compiler will affect this dimension by added all positive size found in that
vector.

– If a size is greater than zero, then it corresponds to the actual size (number of columns).

• outtyp: A column vector of integers specifying the types of regularoutput ports. Its size is equal to the size of
out . See the case ofintyp for types of regular output ports.

• evtin: A column vector of integers specifying the number and sizesof activation inputs. Currently activation
ports can only be of size one. The size of the vector should be equal to the number of input event ports. If no
event input port exists,evtin must be equal to [].

• evtout: A column vector of integers specifying the number and sizesof activation outputs. Currently activation
ports can be only of size one. The size of the vector should be equal to the number of output event ports. If no
event output port existsevtout must be equal to [].

• state: A column vector of doubles containing the initial value of the continuous-time state vector. It must be []
if no continuous state exists.

• dstate: A column vector of doubles containing initial values of discrete-time state vector. It must be [] if no
discrete state exists.

• odstate: List containing initial values of discrete object states.It must be list() if no object states are used. Object
states can be of any Scilab variable types. In computationalfunctions of type 4 (C blocks) only list elements
containing matrices of real, complex, int32, int16 ,int8 ,uint32, uit16 and uint8 are decoded for reading and
writing.

• rpar : A column vector of doubles containing floating point block parameters. Must be [] if no floating point
parameters.

• ipar : A column vector of integers containing integer block parameters. Must be [] if no integer parameters.

• opar: List of objects block parameters. Must be list() if no objects parameters. Objects parameters can be
any types of Scilab variable. In the computational functioncase of type 4 (C blocks) only elements containing
matrix of real, complex, int32, int16 ,int8 ,uint32, uit16 and uint8 will be correctly provided for reading.

7

• blocktype: A character that can be set to ’c’ or ’d’ indifferently for standard blocks. ’x’ is used if we want to
force the computational function to be called during the simulation phase even if the block does not contribute
to the computation of the state derivative. ’l’, ’m’ and ’s’ are reserved. Not to be used.

• firing : A column vector of doubles for initial event firing times of size equal to the number of activation output
ports (see evout). It contains output initial event dates (events generated before any input event arises). Negative
values stands for no initial event programmed on the corresponding port.

• dep_ut: A boolean vector [dep_u, dep_t].

– dep_u: true if block is always active. (output depends continuously of the time)

– dep_t: true if block has direct feed-through, i.e., at least one ofthe outputs depends directly (not through
the states) on one of the inputs. In other words, when the simulation function is called with flag 1, the
value of an input is used to compute the output.

• label: A string that defines a label. It can be used to identify a block in order to access or modify its parameters
during simulation.

• nzcross: An integer for the number of zero-crossing surfaces.

• nmode: An integer for the length of the mode register. Note that this gives the size of the vector mode and not
the total number of modes in which a block can operate in. Suppose a block has 3 modes and each mode can
take two values, then the block can have up to 2^3=8 modes.

• equations: Used in case of implicit blocks. Data structure of type modelica which contains modelica code
description if any. That list contains four entries:

– model: a string given the name of the file that contains the modelicafunction.

– inputs: a column vector of strings that contains the names of the modelica variables used as inputs.

– outputs: a column vector of strings that contains the names of the modelica variables used as outputs.

– parameters: a list with two entries. The first is a vector of strings for the name of modelica variable
names used as parameters and the second entries is a list thatcontains the value of parameters. Names of
modelica states can also be informed with parameters. In that case a third entry is used to do the difference
between parameters and states. For i,e: mo.parameters=list([’C’,’v’],list(C,v),[0,1]) means that ’C’ is a
parameter(0) of value C, and ’v’ is a state(1) with initial value v.

8

2.4 Utilities Scilab functions

2.4.1 getvalue

• [ok,x1,..,x14]=getvalue(desc,labels,typ,ini)
xwindow dialog for data acquisition.

– desc: column vector of strings, dialog general comment

– labels: n column vector of strings, labels(i) is the label of the ithrequired value

– typ: list(typ_1,dim_1,..,typ_n,dim_n):

∗ typ_i: defines the type of the ith value, may have the following values:

· "mat" : for constant matrix

· "col" : for constant column vector

· "row" : for constant row vector

· "vec" : for constant vector

· "str" : for string

· "lis" : for list

∗ dim_i: defines the size of the ith value it must be a integer or a 2-vector of integer, -1 stands for
arbitrary dimension.

– ini: n column vector of strings, ini(i) gives the suggested response for the ith required value.

– ok: boolean ,%t if ok button pressed, %f if cancel button pressed.

– xi: contains the ith value if ok=%t. If left hand side has one more xi than required, the last xi contains the
vector of answered strings.

2.4.2 set_io

• [model,graphics,ok]=set_io(model,graphics,in,out,clkin,clkout,in_implicit,out_implicit)
Checks and sets input/output port sizes.

– model: scicos_model list

– graphics: scicos_graphics list

– in: list of regular input ports description
list(in,in2,inttyp)

∗ in: vector of first dimension. Size nin.

∗ in2: vector of second dimension. Size nin.

∗ intyp : vector of data type. Size nin.

– out: list of regular output ports description.
list(out,out2,outtyp)

∗ out: vector of first dimension. Size nout.

∗ out2: vector of second dimension. Size nout.

∗ outtyp: vector of data type. Size nout.

– clkin: vector of size of event input port.

– clkout: vector of size of event output port.

– in_implicit : vector of type of regular input port (”I” or “E“).

– out_implicit : vector of type of regular output port (”I” or “E“).

– ok: boolean ,%t if model has been updated with success, %f if not.

9

3 Scicos data structures (simulator level)

3.1 Scicos block type

Scicos has the possibility to handle and to call many different sorts of blocks. Some blocks in Scicos palettes are
special and are only used internally by Scicos, such as synchro blocks and the Debug block, but most blocks are
regular blocks which the user can get inspired by to construct new blocks. The following table gives the known Scicos
block types, and is followed by the report of the type of the computational function with its associated calling sequence
by block type.

Type Description Function type Simulator call
-2 Event select block (synchro block). - Never called.
-1 If Then Else block (synchro block). - Never called.
0 C, Fortran or Scilab block. Calling sequence fixed. Obsolete. Type 0. Type 0.
1 C or Fortran block. Varying calling sequence. Obsolete. Type 1. Type 1.
2 C block. Calling sequence fixed. Obsolete. Type 2. Type 2.
3 Scilab block. Calling sequence fixed. Used but obsolete. Type 3. Type 2.
4 C block. Calling sequence fixed. In use. Type 4. Type 4.
5 Scilab block. Calling sequence fixed. In use. Type 5. Type 4.
1001 Fortran block. Dynamically linked. Obsolete. Type 1. Type 1.
2001 C block. Dynamically linked. Obsolete. Type 1. Type 1.
2004 C block. Dynamically linked. In use. Type 4. Type 4.
10001 Implicit C or Fortran block. Obsolete. Type 10001. Type 10001.
10002 Implicit C block. Obsolete. Type 10002. Type 10002.
10004 Implicit C block. In use. Type 10004. Type 4.
10005 Implicit Scilab block. In use. Type 10005. Type 4.
30004 Generic Modelica block. Dynamically linked. In use. Type 10004. Type 4.
99 Debug block. Type 5. Type 4.

Table 4: Scicos block type

Note that even if type 0, 1 and 2 are obsolete, they are still supported in Scicos; some blocks in the standard palettes
of Scicos are still of these types. Block type 3 is still used by scifunc block (Scilab block) but users should prefer the
type 5 when constructing a computational function in Scilabbecause it takes full advantage of new data structures. In
fact it has all the the functionalities implemented for block type 4.

• Calling sequence of computational function type 0
void myfun(flag,nevrt,t,xd,x,nx,z,nz,tvec,ntvec,rpar,nrpar,ipar,nipar,u,nu,y,ny)

• Calling sequence of computational function type 1
void myfun(flag,nevrt,t,xd,x,nx,z,nz,tvec,ntvec,rpar,nrpar,ipar,nipar,u1,nu1,u2,nu2,...,y1,ny1,y2,ny2,...)

• Calling sequence of computational function type 10001 (type 1 implicit)
void myfun(flag,nevrt,t,res,xd,x,nx,z,nz,tvec,ntvec,rpar,nrpar,ipar,nipar,u1,nu1,u2,nu2,...,y1,ny1,y2,ny2,...)

• Calling sequence of computational function type 2
void myfun(flag,nevrt,t,xd,x,nx,z,nz,tvec,ntvec,rpar,nrpar,ipar,nipar,inptr,insz,nin,outptr,outsz,nout)

• Calling sequence of computational function type 2 (zero crossing)
void myfun(flag,nevrt,t,xd,x,nx,z,nz,tvec,ntvec,rpar,nrpar,ipar,nipar,inptr,insz,nin,outptr,outsz,nout,g,ng)

• Calling sequence of computational function type 10002 (type 2 implicit)
void myfun(flag,nevrt,t,res,xd,x,nx,z,nz,tvec,ntvec,rpar,nrpar,ipar,nipar,inptr,insz,nin,outptr,outsz,nout)

• Calling sequence of computational function type 10002 (type 2 implicit with zero crossing)
void myfun(flag,nevrt,t,res,xd,x,nx,z,nz,tvec,ntvec,rpar,nrpar,ipar,nipar,inptr,insz,nin,outptr,outsz,nout,g,ng)

• Calling sequence of computational function type 3
[x,y,z,tvec,xd]=myfun(flag,nevprt,t,x,z,rpar,ipar,u)

• Calling sequence of computational function type 4
void myfun(scicos_block *block,int flag)

• Calling sequence of computational function type 5
[block]=myfun(block,flag)

10

3.2 Scicos block structure of a C computational function (type 4)

The fields of the C structure of associated with a Scicos blockprovides all the necessary information to access block
inputs, outputs, parameters, states, etc. This structure is defined in the file scicos_block4.h, and user must include that
header in each C computational function:

#include <scicos/scicos_block4.h>
...
void mycomputfunc(scicos_block * block,int flag)
{

...
}

The fields, which can contain either C pointers or the data itself, are then accessible via the* block structure with
the formblock->field . These fields can be accessed directly but users should prefer using providedC_macros
to access them. In the current version of Scicos, thescicos_block structure is defined as follows:

Fields Description I/O

int nevprt Activation input number. I
voidg funpt Pointer to the computational function. I
int type computational function type. I
int scsptr Pointer to a Scilab function. I
int nz Length of the discrete state register. I
double *z Pointer to the discrete state register. I/O
int noz Number of discrete objects state. I
int *ozsz Size of discrete objects state. I
int *oztyp Type of discrete objects state. I
void **ozptr Pointer to discrete objects state. I/O
int nx Length of the continuous state register. I
double *x Pointer to the continuous state register. I/O
double *xd Pointer to the derivative continuous state register.I/O
double *res Pointer to the residual continuous state register.O
int *xprop Pointer to the continuous state properties register.O
int nin Number of regular input ports. I
int *insz Size of the regular input ports. I
void **inptr Pointer to the regular input ports. I
int nout Number of regular output ports. I
int *outsz Size of the regular output ports. I
void **outptr Pointer to the regular output ports. O
int nevout Length of the output event register. I
double *evout Pointer to the output event register. O
int nrpar Length of the real parameter register. I
double *rpar Pointer to the real parameter register. I
int nipar Length of the integer parameter register. I
int *ipar Pointer to the integer parameter register. I
int nopar Number of objects parameters. I
int *oparsz Size of object parameters. I
int *opartyp Type of object parameters. I
void **oparptr Pointer to the object parameters. I
int ng Length of the zero crossing register. I
double *g Pointer to the zero crossing register. O
int ztyp Say if the block use zero crossing register. I
int *jroot Pointer to the direction of zero crossing register.I
char *label Pointer to the label of the block. I
void **work Pointer to the workspace. I/O
int nmode Length of the mode register. I
int *mode Pointer to the mode register. I/O

Table 5: C block structure definition

11

3.2.1 Inputs/outputs

• block->nin: Integer that gives the number of regular input ports of the block. One cannot override the index
(3 * block->nin)-1 when reading sizes of input ports in the arrayinsz and the index(block->nin)-1
when reading data in the arrayinptr with a C computational function. The number of regular inputports can
also be obtained using the C macroGetNin(block) .

• block->insz: An array of integers of size[3 * nin,1] that respectively gives the first dimensions, the second
dimensions and the type of the data corresponding to the regular input ports. Note that this array of sizes differs
from the arrayozsz andoparsz ; this is done to provide full compatibility with blocks thatonly use a single
dimension (column vectors).

Suppose you have a block with three inputs: the first input is an int32 matrix of size[3,2] , the second a single
complex number (matrix of size[1,1]) and the last, a real matrix of size[4,1] . In the scicos_model of such
a block, the inputs will be defined as follows:

model.in = [3;1;4]
model.in2 = [2;1;1]
model.intyp = [2;1;3]
and the correspondingblock->insz field at the C computational function level will be coded as follows:

2

1

1

3

1

4

First
dimension

Second
dimension

84

11

10

insz[0]

insz[nin-1]

insz[1]

insz[2*nin]

insz[nin]

insz[3*nin-1]

insz[2*nin-1]

insz

Type

block->insz array

Note the difference here in the type numbers defined at theeditor level (2,1,3) and the type numbers defined at
theC level (84,11,10). The following table gives the correspondence for Scicos types:

Editor Type Editor Number C Type C Number

real 1 double 10
complex 2 double 11
int32 3 long 84
int16 4 short 82
int8 5 char 81
uint32 6 unsigned long 814
uint16 7 unsigned short 812
uint8 8 unsigned char 811

Editor/C data type number correspondence table

• block->inptr: An array of pointers of size[nin,1] that allows direct access to the data contained in the
regular input matrices. Consider the previous example (a block with three inputs: an int32 matrix of size
[3,2] , a complex scalar and a real matrix of size[4,1]). block->inptr contains three pointers, and
should be viewed as arrays containing the data for the int32,the real and the complex matrices as shown in the
following figure.

To directly access the data, the user can use the following instructions:

#include <scicos/scicos_block4.h>
...
SCSINT32_COP * ptr_i;

12

inptr[1]

Real part

Imag part

inptr[1][0]

inptr[1][1]

inptr[2][1]

inptr[2][2]

inptr[2][3]

inptr[2][0]

inptr[2]

inptr

long *

double *

double *

inptr[0][1]

inptr[0][2]

inptr[0][3]

inptr[0][0]

inptr[0]

inptr[0][4]

inptr[0][5]

first

column

column

second

block->inptr array

SCSCOMPLEX_COP* ptr_dc;
SCSREAL_COP* ptr_d;
int n1,m1;
SCSINT32_COP cumsum_i=0;
int i;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the ptrs of the first int32 regular input port * /
ptr_i = (SCSINT32_COP *) block->inptr[0];
/ * get the ptrs of the second complex regular input port * /
ptr_dc = (SCSCOMPLEX_COP *) block->inptr[1];
/ * get the ptrs of the third real regular input port * /
ptr_d = (SCSREAL_COP *) block->inptr[2];
...
/ * get the dimension of the first int32 regular input port * /
n1=block->insz[0];
m1=block->insz[3];
...
/ * compute the cumsum of the input int32 matrix * /
for(i=0;i<n1 * m1;i++) {
cumsum_i += ptr_i[i];
}
...
}

It is highly recommended however that users use provided C macros to access the data:
GetInPortPtrs(blk,x) , GetRealInPortPtrs(block,x) ,
GetImagInPortPtrs(block,x) , Getint8InPortPtrs(block,x) ,
Getint16InPortPtrs(block,x) , Getint32InPortPtrs(block,x) ,
Getuint8InPortPtrs(block,x) , Getuint16InPortPtrs(block,x) ,
Getuint32InPortPtrs(block,x)
to have the appropiate pointer of the data to handle and
GetNin(block) , GetInPortRows(block,x) ,
GetInPortCols(block,x) , GetInPortSize(block,x,y) ,
GetInType(block,x) , GetSizeOfIn(block,x)
to handle number, dimensions and type of regular input ports.

13

x is numbered from 1 to nin and y numbered from 1 to 2.

For the previous example, this gives:

#include <scicos/scicos_block4.h>
...
SCSINT32_COP * ptr_i;
SCSCOMPLEX_COP* ptr_dc;
SCSREAL_COP* ptr_d;
int n1,m1;
SCSINT32_COP cumsum_i=0;
int i;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the ptrs of the first int32 regular input port * /
ptr_i = Getint32InPortPtrs(block,1);
/ * get the ptrs of the second complex regular input port * /
ptr_dc = GetRealInPortPtrs(block,2);
/ * get the ptrs of the third real regular input port * /
ptr_d = GetRealInPortPtrs(block,3);
...
/ * get the dimension of the first int32 regular input port * /
n1=GetInPortRows(block,1);
m1=GetInPortCols(block,1);
...
}

Finally note that the regular input port registers are only accessible for reading.

• block->nout: Integer that gives the number of regular output ports of the block. One cannot override the index
(3 * block->nout)-1 when reading sizes of output ports in the arrayoutsz and the index
(block->nout)-1 when reading data in the arrayoutptr with a C computational function. The num-
ber of regular output ports can also be obtained using the C macroGetNout(block) .

• block->outsz: An array of integers of size[3 * nout,1] that gives the first dimensions, the second dimensions
and the type of data associated with the regular output ports. Note that this array of sizes differs from the array
ozsz andoparsz to provide full compatibility with blocks that only use a single dimension. Suppose that you
have a block with two outputs: the first output is an int32 matrix of size [3,2] , the second a single complex
number (matrix of size[1,1]) and the last a real matrix of size[4,1] . In the scicos_model of such a block,
the outputs will be defined as follows:

model.out = [3;1;4]
model.out2 = [2;1;1]
model.outtyp = [2;1;3]
and the correspondingblock->outsz field at C computational function level will be coded as follows:

2

1

1

3

1

4

First
dimension

Second
dimension

84

11

10

outsz[0]

outsz[nin-1]

outsz[1]

outsz[2*nin]

outsz[nin]

outsz[3*nin-1]

outsz[2*nin-1]

outsz

Type

block->outsz array

14

Note the difference here in the type numbers defined at theeditor level (2,1,3) and the type numbers defined at
theC level (84,11,10); see the previous table to have the correspondence for all Scicos type.

• block->outptr: An array of pointers of size[nout,1] that allows to directly access the data contained in
the regular output matrices. Consider the previous example(block with three outputs: an int32 matrix of size
[3,2] , a complex scalar and a real matrix of size[4,1]). block->outptr contains three pointers to the
data for the int32, the real and the complex matrices as shownin the following figure.

outptr[1]

Real part

Imag part

outptr[1][0]

outptr[1][1]

outptr[2][1]

outptr[2][2]

outptr[2][3]

outptr[2][0]

outptr[2]

outptr

long *

double *

double *

outptr[0][1]

outptr[0][2]

outptr[0][3]

outptr[0][0]

outptr[0]

outptr[0][4]

outptr[0][5]

first

column

column

second

block->outptr array

To directly access the data, the user can use the following instructions:

#include <scicos/scicos_block4.h>
...
SCSINT32_COP * ptr_i;
SCSCOMPLEX_COP* ptr_dc;
SCSREAL_COP* ptr_d;
int n1,m1;
SCSINT32_COP cumsum_i=0;
int i;
...
void mycomputfunc(scicos_block * block,int flag)
{
/ * get the ptrs of the first int32 regular output port * /
ptr_i = (SCSINT32_COP *) block->outptr[0];
/ * get the ptrs of the second complex regular output port * /
ptr_dc = (SCSCOMPLEX_COP *) block->outptr[1];
/ * get the ptrs of the third real regular output port * /
ptr_d = (SCSREAL_COP *) block->outptr[2];
...
/ * get the dimension of the first int32 regular output port * /
n1=block->outsz[0];
m1=block->outsz[3];
...
/ * compute the cumsum of the output int32 matrix * /
for(i=0;i<n1 * m1;i++) {
cumsum_i += ptr_i[i];
}
...
}

15

It is however recommended to use the set of C macros provided in Scicos:
GetOutPortPtrs(block,x) , GetRealOutPortPtrs(block,x) ,
GetImagOutPortPtrs(block,x) , Getint8OutPortPtrs(block,x) ,
Getint16OutPortPtrs(block,x) , Getint32OutPortPtrs(block,x) ,
Getuint8OutPortPtrs(block,x) , Getuint16OutPortPtrs(block,x) ,
Getuint32OutPortPtrs(block,x)
to have the appropiate pointer of the data to handle and
GetNout(block) , GetOutPortRows(block,x) ,
GetOutPortCols(block,x) , GetOutPortSize(block,x,y) ,
GetOutType(block,x) , GetSizeOfOut(block,x)
to handle number, dimensions and type of regular output ports.
x is numbered from 1 to nout and y is numbered from 1 to 2.

For the previous example this gives:

#include <scicos/scicos_block4.h>
...
SCSINT32_COP * ptr_i;
SCSCOMPLEX_COP* ptr_dc;
SCSREAL_COP* ptr_d;
int n1,m1;
SCSINT32_COP cumsum_i=0;
int i;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the ptrs of the first int32 regular output port * /
ptr_i = GetOutPortPtrs(block,1);
/ * get the ptrs of the second complex regular output port * /
ptr_dc = GetRealOutPortPtrs(block,2);
/ * get the ptrs of the third real regular output port * /
ptr_d = GetRealOutPortPtrs(block,3);
...
/ * get the dimension of the first int32 regular output port * /
n1=GetOutPortRows(block,1);
m1=GetOutPortCols(block,1);
...
}

Finally note that the regular output port registers must only be written into ifflag=1 or flag=6.

3.2.2 Events

• block->nevprt: Integer that gives the event input port number by which the block has been activated. This
number is a binary coding. For example if block has two event inputs ports,block->nevprt can take the
value 1 if the block has been activated through its first eventinput port, the value 2 if it has been activated
through the second event input port and 3 if it is activated bythe same event on both input ports 1 and 2. Note
thatblock->nevprt can be -1 if the block is internally activated. One can also retrieve this number by using
the C macrosGetNevIn(block) .

• block->nevout: Integer that gives the number of event output ports of the block (also called the length of the
output event register). One cannot override the index(block->nevout)-1 when setting value of events in
the output event registerevout . The number of event output ports can also be obtained by the use of the C
macroGetNevOut(block) .

• block->evout: Array of doubles of size[nevout,1] corresponding to the output event register. This register
is used to program date of events during the simulation. The values in this array correspond to a delay relative
to the current simulation time:

tevent = tcur + Tdelay (1)

wheretevent is the date of the programmed event,tcur is the current time of simulation andTdelay is the value
that must be placed in the output event register.

16

For example, suppose you want to generate an event through the first event output port, .1 unit of time after each
call to the block, then you should use:

#include <scicos/scicos_block4.h>
...
void mycomputfunc(scicos_block * block,int flag)
{
...
if (flag==3) {
block->evout[0]=0.1;
}
...
}

Note all output events will be asynchronous with event activating the block even if you setblock->evout[x]=0 .
The event output register must be only written into ifflag=3 .

3.2.3 Parameters

• block->nrpar: Integer that gives the length of the real parameter register. One cannot override the index
(block->nrpar)-1 when reading the value of real parameters in the registerrpar . The total number of
real parameters can also be obtained by the use of the C macroGetNrpar(block) .

• block->rpar: Array of double of size[nrpar,1] corresponding to the real parameter register. This register
is used to pass real parameters coming from the Scicos working environment to your block model. The C type
of that array isdouble * (or C scicos typeSCSREAL_COP*). Suppose you have defined the following real
parameters in the scicos_model of a block:

model.rpar = [%pi;%pi/2;%pi/4]
you can then retrieve it in the C computational function with:

#include <scicos/scicos_block4.h>
...
double PI;
double PI_2;
double PI_4;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the first value of the real param register * /
PI = block->rpar[0];
/ * get the second value of the real param register * /
PI_2 = block->rpar[1];
/ * get the third value of the real param register * /
PI_4 = block->rpar[2];
...
}

You can also use the C macroGetRparPtrs(block) to get a pointer to the real parameter register. For
example, if we define the following scicos_model in an interfacing function of a scicos block:

A = [1.3 ; 4.5 ; 7.9 ; 9.8];
B = [0.1 ; 0.98];
model.rpar = [A;B]
in the corresponding C computational function of that block, we use:

#include <scicos/scicos_block4.h>
...
double * rpar;
double * A;
double * B;
...

17

void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get ptrs of the real param register * /
rpar = GetRparPtrs(block);
/ * get the A ptrs array * /
A = rpar;
/ * get the B ptrs array * /
B = &rpar[4];
/ * or B = rpar + 4; * /
...
}

Note that the real parameter register is only accessible forreading.

• block->nipar: Integer that gives the length of the integer parameter register. One cannot override the index
(block->nipar)-1 when reading the value of integer parameters in the registeripar . The total number
of integer parameters can also be obtained by the use of the C macroGetNipar(block) .

• block->ipar: Array of integers of size[nipar,1] corresponding to the integer parameter register. This
register is used to pass integer parameters coming from the Scicos working environment to your block model.
The C type of that array isint * (or C scicos typeSCSINT_COP *). Suppose you have defined the following
integer parameters in the scicos_model of a block:

model.ipar = [(1:3)’;5]

you can the retrieve it in the C computational function with:

#include <scicos/scicos_block4.h>
...
int one;
int two;
int three;
int five;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the first value of the integer param register * /
one = block->ipar[0];
/ * get the second value of the integer param register * /
two = block->ipar[1];
/ * get the third value of the integer param register * /
three = block->ipar[2];
/ * get the fourth value of the integer param register * /
five = block->ipar[3];
...
}

You can also use the C macroGetIparPtrs(block) to get a pointer to the real parameter register. Most of
the time in the Scicos C block libraries, the integer register is used to parameterize the length of real parameters.
For example if you define the following scicos_model in a block:

// set a random size for the first real parameters
A_sz = int(rand(10) * 10);
// set a random size for the second real parameters
B_sz = int(rand(10) * 10);
// set the first real parameters
A = rand(A_sz,1,“uniform”);
// set the second real parameters
B = rand(B_sz,1,“normal”);
// set ipar

18

model.ipar = [A_sz;B_sz]
// set rpar (length of A_sz+B_sz)
model.rpar = [A;B]
the array of real parameters (parameterized byipar) can be retrieved in the corresponding C computational
function with:

#include <scicos/scicos_block4.h>
...
int A_sz;
int B_sz;
double * rpar;
double * A;
double * B;
double cumsum;
int i;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get ptrs of the real param register * /
rpar = GetRparPtrs(block);
/ * get size of the first real param register * /
A_sz = block->ipar[0];
/ * get size of the second real param register * /
B_sz = block->ipar[1];
/ * get the A ptrs array * /
A = rpar;
/ * get the B ptrs array * /
B = &rpar[A_sz];
...
/ * compute the cumsum of the first real parameter array * /
cumsum = 0;
for(i=0;i<A_sz;i++) {
cumsum += A[i];
}
...
/ * compute the cumsum of the second real parameter array * /
cumsum = 0;
for(i=0;i<B_sz;i++) {
cumsum += B[i];
}

Note that integer parameters register is only accessible for reading.

• block->nopar: Integer that gives the number of the object parameters. One cannot override the index
(block->nopar)-1 when accessing data in the arraysoparsz , opartyp andoparptr in a C com-
putational function. This value is also accessible via the CmacroGetNopar(block) .

• block->oparsz: Array of integers of size[nopar,2] that contains the dimensions of matrices of object
parameters. The first column is for the first dimension and thesecond for the second dimension. For example if
we want the dimensions of the previous object parameters, weuse the instructions:

#include <scicos/scicos_block4.h>
...
int nopar;
int n,m;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the number of object parameter * /
nopar=block>nopar;

19

...
/ * get number of row of the last object parameter * /
n=block>oparsz[nopar-1];
/ * get number of column of the last object parameter * /
m=block>oparsz[2 * nopar-1];
...
}

The dimensions of object parameters can be obtained with thefollowing C macros:

GetOparSize(block,x,1); / * get first dimension of opar * /
GetOparSize(block,x,2); / * get second dimension of opar * /

with x an integer that gives the index of the object parameter,numbered from 1 to nopar.

• block->opartyp: Array of integers of size[nopar,1] that contains the type of matrices of object parameters.
The following table gives the correspondence for Scicos type expressed in editor number, in C number and also
corresponding C pointers and C macros used foroparptr :

Editor C
Type Number Number Type Macros
real matrix 1 10 double SCSREAL_COP
complex matrix 2 11 double SCSCOMPLEX_COP
int32 matrix 3 84 long int SCSINT32_COP
int16 matrix 4 82 short SCSINT16_COP
int8 matrix 5 81 char SCSINT8_COP
uint32 matrix 6 814 unsigned long int SCSUINT32_COP
uint16 matrix 7 812 unsigned short SCSUNINT16_COP
uint8 matrix 8 811 unsigned char SCSUINT8_COP
all others data -1 double SCSUNKNOWN_COP

Table 6: Editor/C data type number correspondence table.

The type of object parameter can also be obtained by the use ofthe C macroGetOparType(block,x) . For
example, if we want the C number type of the first object parameter, we use the following C instructions:

#include <scicos/scicos_block4.h>
...
int opartyp_1;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the number type of the first object parameter * /
opartyp_1 = GetOparType(block,1);
...
}

• block->oparptr: An array of pointers of size[nopar,1] that gives direct access to the data contained in the
object parameter. Suppose you have a block with the following opar field in scicos_model:

model.opar=list(int32([1,2;3,4]),[1+%i %i 0.5]);

Then we have two object parameters, one is a 32-bit integer matrix with two rows and two columns and the sec-
ond is a vector of complex numbers that can be seen as a matrix of size[1,3] . At the C computational function
level, the instructions block->oparsz[0] , block->oparsz[1] , block->oparsz[2] ,
block->oparsz[3] will respectively return the values 2, 1, 2, 3 and the instructionsblock->opartyp[0] ,
block->opartyp[1] , the values 11 and 84.block->oparptr will contain then two pointers, and should
be viewed as arrays containing data of object parameters as shown in the following figure.

20

1

0

0.5

oparptr[1][0]

oparptr[1][1]

oparptr[1][2]

0

1

1 oparptr[1][3]

oparptr[1][4]

oparptr[1][5]

Imag part

oparptr[0][1]

oparptr[0][2]

oparptr[0][3]

2

3

4

oparptr[0][0]1

oparptr[0]

long *

double *

first
column

second
column

Real part

oparptr[1]

oparptr

block->oparptr array

For example, to directly access the data, the user can use thefollowing instructions:

#include <scicos/scicos_block4.h>
...
SCSINT32_COP * ptr_i;
SCSINT32_COP cumsum_i;
SCSCOMPLEX_COP* ptr_d;
SCSREAL_COP cumsum_d;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the ptrs of an int32 object parameter * /
ptr_i = (SCSINT32_COP *) block->oparptr[0];
/ * get the ptrs of a double object parameter * /
ptr_d = (SCSCOMPLEX_COP *) block->oparptr[1];
...
/ * compute the cumsum of the int32 matrix * /
cumsum_i = ptr_i[0]+ptr_i[1]+ptr_i[2]+ptr_i[3];
...
/ * compute the cumsum of the real part of the complex matrix * /
cumsum_d = ptr_d[0]+ptr_d[1]+ptr_d[2];
...
}
One can also use the set of C macros:
GetRealOparPtrs(block,x) , GetImagOparPtrs(block,x) ,
Getint8OparPtrs(block,x) , Getint16OparPtrs(block,x) ,
Getint32OparPtrs(block,x) , Getuint8OparPtrs(block,x) ,
Getuint16OparPtrs(block,x) , Getuint32OparPtrs(block,x)
to have the appropiate pointer of the data to handle.
x is numbered from 1 to nopar.
For the previous example that gives:

#include <scicos/scicos_block4.h>
...
SCSINT32_COP * ptr_i;
SCSREAL_COP* ptr_dr;
SCSREAL_COP* ptr_di;
...
void mycomputfunc(scicos_block * block,int flag)
{
...

21

/ * get the ptrs of an int32 object parameter * /
ptr_i = Getint32OparPtrs(block,1);
/ * get the ptrs of a double object parameter * /
ptr_dr = GetRealOparPtrs(block,2);
ptr_di = GetImagOparPtrs(block,2);
...
}
Note that object parameters register is only accessible forreading.

3.2.4 States and work

• block->nx: Integer that gives the length of the continuous state register. One cannot override the index
(block->nx)-1 when reading or writing data in the arrayx , xd or res with a C computational function.

• block->x: Array of doubles of size[nx,1] corresponding to the continuous state register. The value of a
continuous state, for example the first state, can be obtained with the C instructions:

#include <scicos/scicos_block4.h>
...
double x_1;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
x_1=block->x[0];
...
}
Note that onflag=4 , 6 or 2, user can (re)initialize this register. The pointer to thisarray can also be retrieved
via the C macroGetState(block) .

• block->xd: Array of doubles of size[nx,1] corresponding to the derivative of the continuous state register.
It is an output of the simulation function if the block is an explicit block, i.e. the block models a system of
Ordinary Differential Equations (ODE), otherwise, it is aninput. In the latter case, the output is the residual
vectorres associated with a system of Differential Algebraic Equations (DAE).

For example the Lorentz attractor expressed as an ODE systemwith three state variables:

ẋ = f(x, t) (2)

will can be defined as follows:

#include <scicos/scicos_block4.h>
...
double * x = block->x;
double * xd = block->xd;
...
/ * define parameters * /
double a = 10;
double b = 28;
double c = 8/3;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
if (flag == 0) {
xd[0] = a * (x[1]-x[0]);
xd[1] = x[0] * (b-x[2])-x[1];
xd[2] = x[0] * x[1]-c * x[2];
}
...
}

22

• block->res: Array of doubles of size[nx,1] corresponding to Differential Algebraic Equation (DAE) resid-
ual. It is used to express block models corresponding to systems that have the following form:

f(ẋ, x, t) = 0 (3)

For example the Lorentz attractor written as a DAE system with three state variables will be defined as follows:

#include <scicos/scicos_block4.h>
...
double * x = block->x;
double * xd = block->xd;
double * res = block->res;
...
/ * define parameters * /
double a = 10;
double b = 28;
double c = 8/3;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
if (flag == 0) {
res[0] = - xd[0] + (a * (x[1]-x[0]));
res[1] = - xd[1] + (x[0] * (b-x[2])-x[1]);
res[2] = - xd[2] + (x[0] * x[1]-c * x[2]);
}
...
}

• block->xprop: Array of integers of size[nx,1] corresponding to the properties of the continuous state. That
properties are set withflag=7 when DAE solver is used to perform the simulation. Value of state property can
be -1, that means that variable is an algebraic sate or 1 to saythat variable is a differential state.

• block->nz: Integer that gives the length of the discrete state register. One cannot override the index
(block->nz)-1 when reading data in the arrayz with a C computational function. This value is also acces-
sible via the C macrosGetNdstate(block) .

• block->z: Array of doubles of size[nz,1] corresponding to the discrete state register. A value of a discrete
state is directly readable (for example the second state) with the C instructions:

#include <scicos/scicos_block4.h>
...
double z_2;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
z_2=block->z[1];
...
}
Note that the state register should be only updated forflag=4 , 6 or 2. A pointer to this array can also be
retrieve via the C macroGetDstate(block) .

• block->noz: Integer that gives the number of discrete object states. Onecannot override the index
(block->noz)-1 when accessing data in the arraysozsz , oztyp andozptr in a C computational func-
tion. This value is also accessible via the C macroGetNoz(block) .

• block->ozsz:An array of integer of size[noz,2] that contains the dimensions of matrices of discrete object
states. The first column is for the first dimension and the second for the second dimension. For example if we
want the dimensions of the last object state, we use the instructions:

#include <scicos/scicos_block4.h>
...
int noz;

23

int n,m;
...
/ * get the number of object state * /
noz=block>noz;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get number of row of the last object state * /
n=block>ozsz[noz-1];
/ * get number of column of the last object state * /
m=block>ozsz[2 * noz-1];
...
}
The dimensions of object discrete states can be obtained with the following C macro:

GetOzSize(block,x,1); / * get first dimension of oz * /
GetOzSize(block,x,2); / * get second dimension of oz * /
with x an integer that gives the index of the discrete object state,numbered from 1 to noz.

• block->oztyp: An array of integer of size[noz,1] that contains the type of matrices of discrete object states.
The following table gives the correspondence table for Scicos type expressed in editor number, in C number and
also corresponding C pointers and C macros used forozptr :

Editor C

Type Number Number Type Macros
real matrix 1 10 double SCSREAL_COP
complex matrix 2 11 double SCSCOMPLEX_COP
int32 matrix 3 84 long int SCSINT32_COP
int16 matrix 4 82 short SCSINT16_COP
int8 matrix 5 81 char SCSINT8_COP
uint32 matrix 6 814 unsigned long int SCSUINT32_COP
uint16 matrix 7 812 unsigned short SCSUNINT16_COP
uint8 matrix 8 811 unsigned char SCSUINT8_COP
all others data -1 double SCSUNKNOWN_COP

Editor/C data type number correspondence table

The type of discrete object state can also be obtained by the use of the C macroGetOzType(block,x) . For
example, if we want the C number type of the first discrete object state, we use the following C instructions:

#include <scicos/scicos_block4.h>
...
int oztyp_1;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the number type of the first object state * /
oztyp_1 = GetOzType(block,1);
...
}

• block->ozptr: An array of pointers of size[noz,1] that allows direct access to the data contained in the
discrete object state. Suppose you have defined a block with the followingodstatefield in scicos_model:

model.odstate=list(int32([1,2;3,4]),[1+%i %i 0.5]);

Then we have two discrete object states, one is a 32-bit integer matrix with two rows and two columns and
the second is a vector of complex numbers that can be seen as a matrix of size [1,3] . At the C com-
putational function level, the instructionsblock->ozsz[0] , block->ozsz[1] , block->ozsz[2] ,
block->ozsz[3] will respectively return the values 2, 1, 2, 3 and the instructionsblock->oztyp[0] ,

24

block->oztyp[1] the values 11 and 84.block->ozptr will contain then two pointers, and should be
viewed as arrays containing data of discrete object state asshown in the following figure.

1

0

0.5

ozptr[1][0]

ozptr[1][1]

ozptr[1][2]

0

1

1 ozptr[1][3]

ozptr[1][4]

ozptr[1][5]

Imag part

ozptr[0][1]

ozptr[0][2]

ozptr[0][3]

2

3

4

ozptr[0][0]1

ozptr[0]

long *

double *

Real part

ozptr[1]

ozptr

block->ozptr array

For example, to directly access the data, the user can use thefollowing instructions:

#include <scicos/scicos_block4.h>
...
SCSINT32_COP * ptr_i;
SCSINT32_COP cumsum_i;
SCSCOMPLEX_COP* ptr_d;
SCSREAL_COP cumsum_d; ...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the ptrs of an int32 discrete object state * /
ptr_i = (SCSINT32_COP *) block->ozptr[0];
/ * get the ptrs of a double discrete object state * /
ptr_d = (SCSCOMPLEX_COP *) block->ozptr[1];
...
/ * compute the cumsum of the int32 matrix * /
cumsum_i = ptr_i[0]+ptr_i[1]+ptr_i[2]+ptr_i[3];
...
/ * compute the cumsum of the real part of the complex matrix * /
cumsum_d = ptr_d[0]+ptr_d[1]+ptr_d[2];
...
}

One can also use the following C macros:
GetRealOzPtrs(block,x) , GetImagOzPtrs(block,x) ,
Getint8OzPtrs(block,x) , Getint16OzPtrs(block,x) ,
Getint32OzPtrs(block,x) , Getuint8OzPtrs(block,x) ,
Getuint16OzPtrs(block,x) , Getuint32OzPtrs(block,x)
to have the appropriate pointer to the data to handle.
x is numbered from 1 to noz.
For the previous example this gives:

#include <scicos/scicos_block4.h>
...
SCSINT32_COP * ptr_i;
SCSREAL_COP* ptr_dr;
SCSREAL_COP* ptr_di;
...

25

void mycomputfunc(scicos_block * block,int flag)
{
...
/ * get the ptrs of an int32 discrete object state * /
ptr_i = Getint32OzPtrs(block,1);
/ * get the ptrs of a double discrete object state * /
ptr_dr = GetRealOzPtrs(block,2);
ptr_di = GetImagOzPtrs(block,2);
...
}

Finally note that the discrete object states should be only updated ifflag =4, 6 or 2.

• block->work: A free pointer to set a working array for the block.The work pointer must be first allocated
when flag = 4 and be freed whenflag = 5 . The life cycle of this pointer in a C computational function
should be:

#include <scicos/scicos_block4.h>
...
void ** work=block->work;
...
void mycomputfunc(scicos_block * block,int flag)
{
...
/ * initialization * /
if (flag==4) {
/ * allocation of work * /
if (* work=scicos_malloc(sizeof(double))==NULL) {
set_block_error(-16);
return;
}
...
}
...
/ * other flag treatment * /
...
/ * finish * /
else if (flag==5) {
scicos_free(* work);
}
...
}

Note that if a block uses awork pointer, it will be called withflag=2 even if the block does not use discrete
states. The pointer of that array can also be retrieved via the C macroGetWorkPtrs(block) .

3.2.5 Zero crossing surfaces and modes

• block->ng: Integer that gives the number of zero crossing surfaces of the block. One cannot override the index
(block->ng)-1 when reading/writing data in the arrayg with a C computational function. The number of
zero crossing surfaces can also be obtained by the use of the CmacroGetNg(block) .

• block->g: Array of doubles of size[ng,1] corresponding to the zero crossing surface register. This register
is used to detect zero crossings of functions of state variable during simulation. The register is accessible for
writing if flag = 9 . A pointer of this array can also be retrieved via the C macroGetGPtrs(block) .

• block->jroot: Array of integers of size[ng,1] corresponding to the direction of the zero crossing surface
register. This register is used to know if a surface is crossed from negative to positive value or from positive to
negative value. This register is typicallly used for reading with flag = 2 or flag = 3 with nevprt < 0 .
A pointer to this array can also be retrieved via the C macroGetJrootPtrs(block) .

26

• block->nmode: Integer that gives the number of modes of the block. One cannot override the index(block->mode)-1
when reading/writing data in the arraymode with a C computational function. The number of modes can also
be obtained by the use of the C macroGetNmode(block) .

• block->mode: Array of integers of size[nmode,1] corresponding to the mode register. This register is used
to set the mode of the zero crossing surfaces during simulation. It is accessible for writing ifflag = 9 . The
pointer to this array can also be retrieved via the C macroGetModePtrs(block) .

3.2.6 Miscellaneous

• block->type: Integer that gives the type of the computational function. For C blocks, this number is equal to 4.

• block->label: String array that allows to retrieve the label of the block.

27

3.3 Utilities C macros

3.3.1 Inputs/outputs

Macro Type Description
GetNin(blk) int Returns the number of regular input ports.
GetInPortRows(blk,x) int Returns the number of rows (first dimension) of the regular input

port number x.
GetInPortCols(blk,x) int Returns the number of columns (second dimension) of the regular

input port number x.
GetInPortSize(blk,x,y) int Returns the regular input port size number x. (y=1 for the first di-

mension, y=2 for the second dimension)
GetInType(blk,x) int Returns the type of the regular input port number x.
GetInPortPtrs(blk,x) void * Returns the regular input port pointer of the port number x.
GetRealInPortPtrs(blk,x) double * Returns the pointer of real part of the regular input port number x.
GetImagInPortPtrs(blk,x) double * returns a pointer to the imaginary part of the regular input port num-

ber x.
Getint8InPortPtrs(blk,x) char * returns a pointer to the int8 typed regular input port numberx.
Getint16InPortPtrs(blk,x) short * returns a pointer to the int16 typed regular input port number x.
Getint32InPortPtrs(blk,x) long * returns a pointer to the int32 typed regular input port number x.
Getuint8InPortPtrs(blk,x) unsigned

char*
returns pointer to the uint8 typed regular input port numberx.

Getuint16InPortPtrs(blk,x) unsigned
short *

returns pointer to the uint16 typed regular input port number x.

Getuint32InPortPtrs(blk,x) unsigned
long *

returns a pointer to the uint32 typed regular input port number x.

GetSizeOfIn(blk,x) int Returns the size of the type of the regular input port number xin
bytes.

GetNout(blk) int Returns the number of regular output ports.
GetOutPortRows(blk,x) int returns number of rows (first dimension) of the regular output port

number x.
GetOutPortCols(blk,x) int Returns the number of columns (second dimension) of the regular

output port number x.
GetOutPortSize(blk,x,y) int Returns the size of the regular output port number x. (y=1 forthe

first dimension, y=2 for the second dimension)
GetOutType(blk,x) int Returns the type of the regular output port number x.
GetOutPortPtrs(blk,x) void * Returns a pointer to the regular output port number x.
GetRealOutPortPtrs(blk,x) double * Returns a pointer to the real part of the regular output port number

x.
GetImagOutPortPtrs(blk,x) double * Returns a pointer to the imaginary part of the regular outputport

number x.
Getint8OutPortPtrs(blk,x) char * Returns a pointer to the int8 typed regular output port number x.
Getint16OutPortPtrs(blk,x) short * Returns a pointer to the int16 typed regular output port number x.
Getint32OutPortPtrs(blk,x) long * Returns a pointer to the int32 typed regular output port number x.
Getuint8OutPortPtrs(blk,x) unsigned

char *
Returns a pointer to the uint8 typed regular output port number x.

Getuint16OutPortPtrs(blk,x) unsigned
short *

Returns a pointer to the uint16 typed regular output port number x.

Getuint32OutPortPtrs(blk,x) unsigned
long *

Returns a pointer to the uint32 typed regular output port number x.

GetSizeOfOut(blk,x) int Returns the size of the type of the regular output port numberx in
bytes.

Table 7: Inputs/outputs C macros

28

3.3.2 Events

Macro Type Description

GetNevIn(blk) int Returns the input event number.
GetNevOut(blk) int Returns the number of event output port.
GetNevOutPtrs(blk) double * Returns a pointer to the event output register.

Table 8: Events C macros

3.3.3 Parameters

Macro Type Description
GetNipar(blk) int Returns the number of integer parameters.
GetIparPtrs(blk) int * Returns a pointer to the integer parameters register
GetNrpar(blk) int Returns the number of real parameters.
GetRparPtrs(blk) double * Returns a pointer to the real parameters register.
GetNopar(blk) int Returns the number of object parameters.
GetOparType(blk,x) int Returns the type of object parameters number x.
GetOparSize(blk,x,y) int Returns the size of object parameters number x. (y=1 for the first

dimension, y=2 for the second dimension)
GetOparPtrs(blk,x) void * Returns a pointer to the object parameters number x.
GetRealOparPtrs(blk,x) double * Returns a pointer to the real object parameters number x.
GetImagOparPtrs(blk,x) double * Returns a pointer to the imaginary part of the object parameters

number x.
Getint8OparPtrs(blk,x) char * Returns a pointer to the int8 typed object parameters numberx.
Getint16OparPtrs(blk,x) short * Returns a pointer to the int16 typed object parameters number x.
Getint32OparPtrs(blk,x) long * Returns a pointer to the int32 typed object parameters number x.
Getuint8OparPtrs(blk,x) unsigned

char *
Returns a pointer to the uint8 typed object parameters number x.

Getuint16OparPtrs(blk,x) unsigned
short *

Returns a pointer to the uint16 typed object parameters number x.

Getuint32OparPtrs(blk,x) unsigned
long *

Returns a pointer to the uint32 typed object parameters number x.

GetSizeOfOpar(blk,x) int Returns the size of the object parameters number x.

Table 9: Parameters C macros

29

3.3.4 States and work

Macro Type Description

GetNstate(blk) int Returns the number of continuous state.
GetState(blk) double * Returns the pointer of the continuous state register.
GetDerState(blk) double * Returns a pointer to the derivative of the continuous state register.
GetResState(blk) double * Returns a pointer to the residual of the continuous state register.
GetXpropPtrs(blk) int * Returns a pointer to the continuous state properties register.
GetNdstate(blk) int Returns the number of discrete states.
GetDstate(blk) double * Returns a pointer to the discrete state register.
GetNoz(blk) int Returns the number of object states.
GetOzType(blk,x) int Returns the type of object state number x.
GetOzSize(blk,x,y) int Returns the size of object state number x. (y=1 for the first dimen-

sion, y=2 for the second dimension).
GetOzPtrs(blk,x) void * Returns a pointer to the object state number x.
GetRealOzPtrs(blk,x) double * Returns a pointer to the real object state number x.
GetImagOzPtrs(blk,x) double * Returns a pointer to the imaginary part of the object state number x.
Getint8OzPtrs(blk,x) char * Returns a pointer to the int8 typed object state number x.
Getint16OzPtrs(blk,x) short * Returns a pointer to the int16 typed object state number x.
Getint32OzPtrs(blk,x) long * Returns a pointer to the int32 typed object state number x.
Getuint8OzPtrs(blk,x) unsigned

char *
Returns a pointer to the uint8 typed object state number x.

Getuint16OzPtrs(blk,x) unsigned
short *

Returns a pointer to the uint16 typed object state number x.

Getuint32OzPtrs(blk,x) unsigned
long *

Returns a pointer to the uint32 typed object state number x.

GetSizeOfOz(blk,x) int Returns the size of the object state number x.
GetWorkPtrs(blk) void * Returns a pointer to the Work array.

Table 10: States and work C macros

3.3.5 Zero crossing surfaces and modes

Macro Type Description

GetNg(blk) int Returns the number of zero crossing surfaces.
GetGPtrs(blk) double * Returns a pointer to the zero crossing register.
GetJrootPtrs(blk) int * Returns a pointer to the direction of the zero crossing register.
GetNmode(blk) int Returns the number of modes.
GetModePtrs(blk) int * Returns a pointer to the mode register.

Table 11: Zero crossing surfaces and modes C macros

3.3.6 Miscellaneous

Macro Type Description
GetLabelPtrs(blk) char * Returns the pointer to the label of the block.

Table 12: Miscellaneous C macros

30

3.4 Utilities C functions

The scicos_block4.h header provides some utility functions to interact with the simulator in the C computational
functions.

• void do_cold_restart();
This function forces the solver to do a cold restart. It should be used in situations where the block creates a
non smooth signal. Note that in most situations, non smooth situations are detected by zero-crossings and this
function is not needed. This block is used in very exceptional situations.

• int get_phase_simulation();
This function returns an integer which indicates whether the simulator is realizing time domain integration. It
can return:

– 1: The simulator is on a discrete activation time.

– 2: The simulator is realizing a continuous time domain integration.

• double get_scicos_time();
This function returns the current time of simulation.

• int get_block_number();
This function returns an integer: the block index in the compiled structure. Each block in the simulated diagram
has a single index, and blocks are numbered from 1 tonblk (the total number of blocks in the compiled
structure).

• void set_block_error(int);
Function to set a specific error number during the simulationfor the current block. If used, after the execution
of the computational function of the block, the simulator ends and returns an error message associated with the
number given as integer argument.
The following calls are allowed:

– set_block_error(-1);: the block has been called with input out of its domain,

– set_block_error(-2);:singularity in a block,

– set_block_error(-3);:block produces an internal error,

– set_block_error(-16);:cannot allocate memory in block.

• void Coserror(char *fmt,...);
Function to return a specific error message in the Scicos editor. If used, after the execution of the computational
function of the block, the simulator will end and will returnthe error message specified in argument (of type
char*).

• void end_scicos_sim();
A very specific function to set the current time of the simulator to the final integration time thus ending the
simulation.
Only expert user should use this function.

• void set_pointer_xproperty(int* pointer); (obsolete)
This function sets a vector of integers to inform the type (algebraic or differential) of the continuous state
variables associated with the block. Note that this function is obsolete. User will prefer direct access to the field
block->xprop or the macro approach (withGetXpropPtrs(blk)) to set the property of continuous state.

• void * scicos_malloc(size_t);
This function must be used to do allocation of Scicos pointers inside a C computational function and in particular
whenflag =4 for the work pointer* block->work .

• void scicos_free(void *p);
This function must be used to free Scicos pointers inside a C computational function and in particular when
flag =5 for the work pointer* block->work .

31

3.5 Scicos block structure of a Scilab computational function (type 5)

A Scicos computational function of type 5 can be realized by the use of a Scilab function. That function doesn’t really
differs from all other Scilab function: one can use all functions and instructions of the Scilab language inside that
function to do the computation.

Such a function must be written in a file with extension .sci, must be loaded inside Scilab by the common loading
Scilab function (exec , getf , getd , genlib ,...) and must have two right hand side arguments and one lefthand
side argument, as the following calling sequence:

function block=myblock(block,flag)
...
//your simulation instructions
...
endfunction

When the simulator is calling such a computational function, it build a Scilab structure (in the previous example
this is the namedblock rhs/lhs arguments) from his own internal C representation of a block structure (see section
3.2 for more details about the C structure of scicos blocks).That structure is a typed list variable that has the following
fields.

Fields Description I/O
nevprt Activation input number. I
funpt Pointer to the computational function. I
type computational function type. I
scsptr Pointer to a scilab function. I
nz Length of the discrete state register. I
z Discrete state register. I/O
noz Number of discrete objects state. I
ozsz Vector of size of discrete objects state. I
oztyp Vector of type of discrete objects state. I
oz List of discrete objects state. I/O
nx Length of the continuous state register. I
x Continuous state register. I/O
xd Derivative continuous state register. I/O
res Residual continuous state register. O
nin Number of regular input ports. I
insz Vector of size of the regular input ports. I
inptr List of regular input ports. I
nout Number of regular output ports. I
outsz Vector of size of the regular output ports. I
outptr List of regular output ports. O
nevout Length of the output event register. I
evout Output event register. O
nrpar Length of the real parameter register. I
rpar Real parameter register. I
nipar Length of the integer parameter register. I
ipar Integer parameter register. I
nopar Number of objects parameters. I
oparsz Vector of size of object parameters. I
opartyp Vector of type of object parameters. I
opar List of the object parameters. I
ng Length of the zero crossing register. I
g Zero crossing register. O
ztyp Say if the block use zero crossing register. I
jroot Vector of direction of zero crossing register.I
label String, the label of the block. I
work Not Used
nmode Length of the mode register. I
mode Pointer to the mode register. I/O

Table 13: Scilab block structure definition

Each fields are then accessible inside the computational function by the use ofblock.field .

32

3.5.1 Inputs/outputs

• block.nin: a scalar that gives the number of regular input ports. This isa read only data.

• block.insz: a vector of size3* nin , that gives the dimensions and types of the regular input ports.

– block.insz(1:nin) : are the first dimensions.

– block.insz(nin+1:2 * nin) : are the second dimensions.

– block.insz(2 * nin+1:3 * nin) : are the type of data (C coding).

This is a read only data.

• block.inptr: a list of sizenin that enclosed typed matrices for regular input ports. Each element correspond to
only one regular input port. Then i-th matrix of the block.inptr list will have the dimensions [block.insz(i) ,
block.insz(nin+i)] and the typeblock.insz(2 * nin+i) .
The data type that can be provided by regular input ports are:

– 1: matrix of real numbers,

– 2: matrix of complex numbers,

– 3: matrix of int32 numbers,

– 4: matrix of int16 numbers,

– 5: matrix of int8 numbers,

– 6: matrix of uint32 numbers,

– 7: matrix of uint16 numbers,

– 8: matrix of uint8 numbers.

This is a read only data.

• block.nout: a scalar that gives the number of regular output ports. This is a read only data.

• block.outsz: a vector of size3* nout , that gives the dimensions and types of the regular output ports.

– block.outsz(1:nout) : are the first dimensions.

– block.outsz(nout+1:2 * nout) : are the second dimensions.

– block.outsz(2 * nout+1:3 * nout) : are the type of data (C coding).

This is a read only data.

• block.outptr: a list of sizenout that enclosed typed matrices for regular output ports. Eachelement cor-
respond to only one regular output port. Then i-th matrix of the block.outptr list will have the dimensions
[block.outsz(i) , block.outsz(nin+i)] and the typeblock.outsz(2 * nin+i) .
The data type that can be provided by regular output ports are:

– 1: matrix of real numbers,

– 2: matrix of complex numbers,

– 3: matrix of int32 numbers,

– 4: matrix of int16 numbers,

– 5: matrix of int8 numbers,

– 6: matrix of uint32 numbers,

– 7: matrix of uint16 numbers,

– 8: matrix of uint8 numbers.

Values of regular output ports will be saved in the C structure of the block only forflag=6 andflag=1 .

3.5.2 Events

• block.nevprt: a scalar given the event input port number (binary coding) which has activated the block. This is
a read only data.

• block.nevout: a scalar given the number of output event port of the block. This is a read only data.

• block.evout: a vector of sizenevout corresponding to the register of output event. Values of output event
register will be saved in the C structure of the block only forflag=3 .

33

3.5.3 Parameters

• block.nrpar: a scalar given the number of real parameters. This is a read only data.

• block.rpar: a vector of sizenrpar corresponding to the real parameter register. This is a readonly data.

• block.nipar: a scalar given the number of integer parameters. This is a read only data.

• block.ipar: a vector of sizenipar corresponding to the integer parameter register. This is a read only data.

• block.nopar: a scalar given the number of object parameters. This is a readonly data.

• block.oparsz: a matrix of size[nopar,2] , that respectively gives the first and the second dimension of object
parameters. This is a read only data.

• block.opartyp: a vector of sizenopar given the C coding type of data. This is a read only data.

• block.opar: a list of sizenopar given the values of object parameters. Each element ofopar can be either a
typed matrix or a list. Only matrix that encloses numbers of type real, complex, int32, int16, int8, uint32, uint16
and uint8 are allowed, all other types of data will be enclosed in a sub-list. This is a read only data.

3.5.4 States

• block.nz: a scalar giving the number of discrete state for the block. This is a read only data.

• block.z: a vector of sizenz corresponding to the discrete state register. Values of discrete state register will be
saved in the C structure of the block only forflag=4 , flag=6 , flag=2 andflag=5 .

• block.noz: a scalar that gives the number of discrete object state. Thisis a read only data.

• block.ozsz: a matrix of size[noz,2] , that respectively gives the first and the second dimension of discrete
object state. This is a read only data.

• block.oztyp: a vector of sizenoz giving the C coding type of data.

• block.oz: a list of sizenoz giving the values of discrete object states. Each element ofoz can be either a typed
matrix or a list. Only matrix that encloses numbers of type real, complex, int32, int16, int8, uint32, uint16 and
uint8 are allowed, all other types of data will be enclosed ina sub-list. Values of discrete object state will be
saved in the C structure of the block only forflag=4 , flag=6 , flag=2 andflag=5 .

• block.nx: a scalar giving the number of continuous states for the block. This is a read only data.

• block.x: a vector of sizenx giving the value of the continuous state register. Values ofthe continuous state
register will be saved in the C structure of the block only forflag=4 , flag=6 andflag=2 .

• block.xd: a vector of sizenx giving the value of the derivative continuous state register. Values of the derivative
continuous state register will be saved in the C structure ofthe block only forflag=4 , flag=6 , flag=0 and
flag=2 .

• block.res: a vector of sizenx corresponding to the Differential Algebraic Equation (DAE) residual. Values of
that register will be saved in the C structure of the block only for flag=0 , andflag=10 .

• block.xprop: a vector of sizenx corresponding to the properties of the continuous state. Itused for DAE solver
and works withflag=7 . Values of that register can be -1 or 1 to says respectively that state is an algebraic or
a differential state.

3.5.5 Zero crossing surfaces and modes

• block.ng: a scalar giving the number of zero crossing surfaces for the block. This is a read only data.

• block.g: a vector of sizeng corresponding to the zero crossing register. Values of thatregister will be saved in
the C structure of the block only forflag=9 .

• block.jroot: a vector of sizeng corresponding to the direction of the zero crossing register.

• block.nmode: a scalar giving the number of mode for the block. This is a readonly data.

• block.mode: a vector of sizemode that corresponds to the mode register. Values of that register will be saved
in the C structure of the block only forflag =9, with phase_simulation =1.

34

3.5.6 Miscellaneous

• block.type: a scalar giving the type of the block. This is a read only data.

• block.label: a string giving the label of the block. This is a read only data.

3.6 Utilities Scicos functions

• blk=curblock()
Return the current called scicos block during the simulation.

– blk: the current block number in the compiled structure.

• [label]=getblocklabel(blk)
Returns the label of a scicos block.

– blk: Integer parameter. Set the index of a block (in the compiled structure).

– label: String parameter. Gives the string of the label of theblock numbered blk.

• [psim]=phase_simulation()
That function says if the Scicos simulator is realizing the time domain integration.

– psim: get the current phase of the simulation
1: The simulator is on a discrete activation time.
2: The simulator is realizing a continuous time domain integration.

• [xprop]=pointer_xproperty
Returns the type of all continuous time state variables. This function returns a vector that informs the type
(algebraic or differential) of the continuous state variables of a block.

– xprop: The value gives the type of the states:
-1: an algebraic state.
1: a differential state.

• t=scicos_time()
Returns the current simulation time during simulation.

– t: that is the current simulation time returned as double.

• set_xproperty(xprop) (obsolete)
Sets the type of a continuous time state variable. This function set a vector to inform the type (algebraic or
differential) of the continuous state variables of a block.

– xprop: The value gives the type of the states:
-1: an algebraic state.
1: a differential state.

Note that this function is obsolete. User will prefer directaccess to the fieldblock.xprop to set the property
of continuous state.

• set_blockerror(n)
Sets the block error number. Function to set a specific error during the simulation for the current block. If used,
after the execution of the computational function of the block, the simulation ends and Scicos returns an error
message associated with the number given in the argument.

– n: an error number. The following calls are allowed:

∗ set_blockerror(-1)
the block has been called with input out of its domain

∗ set_blockerror(-2)
singularity in a block

∗ set_blockerror(-3)
block produces an internal error

∗ set_blockerror(-16)
cannot allocate memory in block

35

• coserror(str)
Abort the simulation to return an error message.

– str: A string given the error message.

• [myvar]=getscicosvars([str1;str2;...])
Supervisor utility function. That utility function is usedto retrieve working arrays of Scicos simulator and
compiler during simulation. It can be used inside a Scilab block to get information of all type of blocks. That
function is very useful to debug diagrams and to do prototypes of simulations.

– str,str1,str2,...: That parameter can be a string or a matrix of string. The following entries are allowed:

36

str Description

x returns the continuous state register.
nx returns the length of the continuous state register.
xptr returns the pointers register of the continuous state register.
zcptr returns the pointers register of the zero-crossing surfaces register.
z returns the discrete state register.
nz returns the length of the continuous state register.
zptr returns the pointers register of the discrete state register.
noz returns the number of elements of the discrete object state list.
oz returns the discrete object state list.
ozsz returns the size of the elements of the discrete object statelist.
oztyp returns the type of the elements of the discrete object statelist.
ozptr returns the pointers register of the discrete object state list.
rpar returns the real parameter register.
rpptr returns the pointers register of the real parameter register.
ipar returns the integer parameter register.
ipptr returns the pointers register of the integer parameter register.
opar returns the object parameter list.
oparsz returns the size of the elements of the object parameter list.
opartyp returns the type of the elements of the object parameter list.
opptr returns the pointers register of the object parameter list.
outtb returns the output register.
inpptr returns the pointers register of the number of regular inputports.
outptr returns the pointers register of the number of regular output ports.
inplnk returns the pointers register of the links connected to regular input ports.
outlnk returns the pointers register of the links connected to regular output ports.
subs not used
tevts returns the current date register of the agenda.
evtspt returns the current event register of the agenda.
pointi returns the next event to be activated.
iord returns the vector of blocks activated at the start of the simulation.
oord returns the vector of blocks whose outputs affects computation of continuous state derivatives.
zord returns the vector of blocks whose outputs affects computation of zero-crossing surfaces.
funtyp returns the vector of type of computational functions.
ztyp returns the pointers vector for blocks which use zero-crossing surfaces.
cord returns the vector of blocks whose outputs evolve continuously.
ordclk returns the matrix associated to blocks activated by outputactivation ports.
clkptr returns the pointers vector for output activation ports.
ordptr returns the pointers vector to ordclk designating the part of ordclk corresponding to a given activation.
critev returns the vector of the critical events.
mod returns the vector pointers of block modes.
nmod returns the length of the vector pointers of block modes.
iz returns the register that store pointers of block->work.
izptr returns the pointers vector of the register that store C pointers of block->work.
nblk returns the number of block.
outtbptr returns the register that store C pointers of outtb.
outtbpsz returns the register that store the size of the elements of outtb.
outtbtyp returns the register that store the type of the elements of outtb.
nlnk returns the number of output.
ncord returns the number of blocks whose outputs evolve continuously.
nordptr returns the number of blocks whose outputs evolve by activation.
iwa n.d.
blocks returns a list that contains all block structures contains in the diagram.
ng returns length of the zero-crossing surfaces register.
g returns the zero-crossing surfaces register.
t0 returns the current time of the simulation.
tf returns the final time of the simulation.
Atol returns the integrator absolute tolerance for the numerical solver.
rtol returns the integrator relative tolerance for the numerical solver.
ttol returns the tolerance on time of the simulator.
deltat returns the maximum integration time interval.
hmax returns the maximum step size for the numerical solver.
nelem returns the number of elements in outtb.
outtb_elem returns the vector of the number of elements in outtb.

Table 14: Arguments of the function getscicosvars

– myvar: That output parameter can be an int32 matrix, a doublematrix or a Tlist. This is given by the input
parameter.

37

3.7 Use of flags

During the simulation, the computational functions will becalled with a given flag that corresponds to the task to be
realized and with the event number by which it has been activated.

Flag 4: Initialization

This is done only once in the initialization phase for all blocks. Input event numbers are not used in that case. Outputs
and states can be initialized. Some blocks use also this flag to open files, to do allocation and initialization of the field
block->work or initialize graphic windows.

Flag 6: Initialization, fixed-point computation

Flag 6 is used to set constraints that must be satisfied at the initial time. Scicos uses a fixed point computation scheme
to force the constraints so the blocks are called more than once with flag 6 at time 0. This is a special initialization
technique for example to find the steady state of a system before running the simulation. Input event numbers are not
used in this case.

Flag 1: Output computation

The output computation can be performed many times in one time step of the simulation in particular when the diagram
contains blocks that use both discrete and continuous satesand zero crossing surfaces. In the current version of Scicos
all blocks are called with flag = 1 at least once in every simulation time step, even if they don’t have any outputs.

Flag 2: Discrete state computation

If blocks use states, this flag is when the state registersblock->x , block->z , block->oz , block->work must
be set during discrete activation (withblock->nevptr ≥0) but also to computeblock->x in the case of activation
due to an internal zero crossing, in which case the input event numberblock->nevptr will be -1.

Flag 0: Continuous state derivative computation

This flag is used when the derivativeblock->xd or residualblock->res of the continuous state needs to be set.
Only blocks that use continuous state are called with flag=0.

Flag 3: Output event computation

Output event computation is done for blocks with output event register during discrete activation but also zero crossing
activation. Note that in this latter case, the input event numberblock->nevptr will be -1.

Flag 9: Modes and zero crossing computation

Flag 9 is used to evaluate the function of zero crossingsblock->g and to set the modes,block->mode .

Flag 5: Ending

All blocks are called with flag = 5 before the end of the simulation or when the simulator aborts the simulation in case
an error occurs during the simulation. Input event numbers are not used in that case.

Flag 7: Properties of the continuous state variables

Set the properties of the continuous state variables. Used for the description of DAE system (also internally used and
generated by Scicos/Modelica implementation).

Flag 10: Jacobian computation

Computation of Jacobian matrix of the system (internally used and generated by Scicos/Modelica implementation).

38

