
Scicos Block

Fady NASSIF

1 Introduction

Scicos is a scilab toolbox for modeling and simulating dynamical systems. It
is particularly useful for modeling systems where continuous-time and discrete-
time components are disconnected. The graphic editor of the toolbox Scicos
allows the user to describe his dynamic system in a completely modular way.
One of the basic module from which scicos diagram is constructed is the Block. A
block in Scicos defines an operation that can evolve continuously or discretely in
time. By interconnecting blocks with links, the user can construct his algorithm.
A large number of mostly used blocks is saved in palettes,these blocks provide
elementary operations needed to construct models diagram. Still users of scicos
can create their own blocks. In this report, we will explain how to create a new
basic scicos block and we will give a brief description about scicos structure.

1

2 Creating a basic scicos block

Each Scicos block is defined by two functions. The first one is the interfacing
function, it is written in Scilab and it defines the geometry of the block (in-
puts,outputs,Icon, size, shape,...). It is also the function that handle the user
interface (parameter, states,...). The second function is the computational func-
tion, it is mostly written in C but it can be also written in scilab. This function
defines the behavior of the block during the simulation phase. A general ex-
ample of the interfacing function is the GENERIC block in the Others palette.
This block can be used by the user to create any operational block he wants.
An interfacing function can support more than one computational function, and
a computational function can be used by more than one interfacing function.
Let us take the example of the computational function named selector m, this
function is used by the block SELECT and ISELECT in the Branching palette.
Another example that shows the use of multiple computational function by one
interfacing function is the SUMMATION block in the Linear palette.

2.1 Interfacing Function

The interfacing function is only used by the editor. It is used to initialize the
block, to draw it and to modify its parameters. It defines also the initial state
of the block and its computational function used by the simulator. The inputs
of the interface function are job and arg1. The outputs of the function x, y and
typ depends on the input flag job.

[x,y,typ]=block(job,arg1)

2.1.1 job the task parameter of GUI function:

The parameter job can take the following values:

• plot: This function draws the block.

– arg1 is the data structure of the block.

– x,y,typ are unused.

In general, we used the standard draw function to draw a rectangular
block, as well as its inputs and outputs ports. It also manages the size,
the icon and the colors of the block.

• getinputs: This function returns the position and the type of inputs ports
(regular or event).

– arg1 is the data structure of the block.

– x is the vector of x coordonates of inputs ports.

– y is the vector of y coordonates of inputs ports.

– typ is the vector of type of inputs ports (1 for regular and 2 for event).

2

In general, we use the standard input function.

• getoutputs: This function returns the position and the type of outputs
ports (regular or event).

– arg1 is the data structure of the block.

– x is the vector of x coordonates of outputs ports.

– y is the vector of y coordonates of outputs ports.

– typ is the vector of type of outputs ports (1 for regular and 2 for
event).

In general, we use the standard output function. The standard input,
standard output functions place the regular input/output port of a block
on its side, the event inputs ports on its top and the event outputs ports
on its bottom.

• getorigin: This function returns the coordinates of the lower left point
of the rectangular containing the block’s shape.

– arg1 is the data structure of the block.

– x is the x coordonate of the lower left point of the block.

– y is the y coordonate of the lower left point of the block.

– typ is unused.

In general, we use the standard origin function.

• set: This function open a dialog box for the block parameter acqisition, if
it exists. This is done when we double click on the block. The programme
must check the coherence of the parameters provided by the user.

– arg1 is the data structure of the block.

– x is the new data structure of the block.

– y is unused.

– typ is unused.

• define: This function initializes the data structure of the block (name
of the computational function, the type, input/output number, sizes and
data type,etc...).

– arg1 is unused.

– x is the data structure of the block.

– y is unused.

– typ is unused.

3

Example: the Interfacing Function of the Unit Delay Block

function [x,y,typ]=DOLLAR_m(job,arg1,arg2)

// Copyright INRIA

x=[];y=[];typ=[];

select job

case ’plot’ then

standard_draw(arg1)

case ’getinputs’ then

[x,y,typ]=standard_inputs(arg1)

case ’getoutputs’ then

[x,y,typ]=standard_outputs(arg1)

case ’getorigin’ then

[x,y]=standard_origin(arg1)

case ’set’ then

x=arg1;

graphics=arg1.graphics;exprs=graphics.exprs

model=arg1.model;

//backward compatibility

if size(exprs,’*’)<2 then exprs(2)=’0’; end

while %t do

[ok,a,inh,exprs]=getvalue(’Set 1/z block parameters’,..

[’initial condition’;’Inherit (no:0, yes:1)’],...

list(’mat’,[-1 -2],’vec’,-1),exprs)

if ~ok then break, end

out=[size(a,1) size(a,2)]; if out==0 then out=[], end

in=out

model.sim=list(’dollar4_m’,4)

model.odstate=list(a);

model.dstate=[];

if (type(a)==1) then

if isreal(a) then

it=1;

ot=1;

if (size(a,1)==1 | size(a,2)==1) then

model.sim=list(’dollar4’,4);

model.dstate=a(:);

model.odstate=list();

end

else

it=2;

ot=2;

end

elseif (typeof(a)=="int32") then

it=3;

ot=3;

elseif (typeof(a)=="int16") then

it=4;

ot=4;

4

elseif (typeof(a)=="int8") then

it=5;

ot=5;

elseif (typeof(a)=="uint32") then

it=6;

ot=6;

elseif (typeof(a)=="uint16") then

it=7;

ot=7;

elseif (typeof(a)=="uint8") then

it=8;

ot=8;

else message ("type is not recognized"); ok=%f;

end

if ok then

[model,graphics,ok]=set_io(model,graphics,list(in,it),list(out,ot),ones(1-inh,1),[])

end

if ok then

graphics.exprs=exprs;

x.graphics=graphics;x.model=model

break

end

end

case ’define’ then

z=0

inh=0

in=1

exprs=string([z;inh])

model=scicos_model()

model.sim=list(’dollar4’,4)

model.in=in

model.out=in

model.evtin=1-inh

model.dstate=z

model.blocktype=’d’

model.dep_ut=[%f %f]

gr_i=’xstringb(orig(1),orig(2),’’1/z’’,sz(1),sz(2),’’fill’’)’

x=standard_define([2 2],model,exprs,gr_i)

end

endfunction

The data structure used in this function will be explained later. We are going to
study the ’set’ case of this example. We have in this case two majors and basics
function of the ’set’ case. The getvalue and the setio. The getvalue function
is used to create a dialog for the block. It must be used in all user blocks, since
it is overloaded when Eval is performed. In our example, the function is defined
by:

[ok,a,inh,exprs]=getvalue(’Set 1/z block parameters’,..

5

[’initial condition’;’Inherit (no:0, yes:1)’],...

list(’mat’,[-1 -2],’vec’,-1),exprs)

Where the ’initial condition’ and ’Inherit’ are the parameters that appear in the
dialog box. (for more information on getvalue execute help getvalue in Scilab
prompt).

The setio function update the model and the graphic of a block by adjust-
ing its input/output number, size, type and data type. The input parameter
of this function are model, graphics, input, output, eventinput, eventoutput.
The regular input/output are defined as a list where the first element is the in-
put/output dimensions and the second is the input/output data type (third and
forth input arguments of the function setio). The event input/output ports are
defined by the fifth/sixth argument of the setio. Each one is defined as a col-
umn vector of ones where the size is equal to the number of event input/output.
In our example:

[model,graphics,ok]=set_io(model,graphics,list(in,it),list(out,ot),..

ones(1-inh,1),[])

• in is the input ports dimensions. The number of lines of in defines the
number of regular inputs.

• it is the input data type. It is a line vector where the number of columns
is equal to the number of regular inputs. The values of this vector are
integer between 1 and 8.

• out is the output ports dimensions. The number of lines of out defines the
number of regular outputs.

• ot is the output data type. It is a line vector where the number of columns
is equal to the number of regular outputs. The values of this vector must
be integer between 1 and 8.

In addition to the input/output update, the ’set’ case updates also the states
of the block, the computational function, etc... Here for example we charge the
object state of the block by the ’initial value’.

2.2 Computational Function

The computational function defines the operation of the block. It is called by
the simulator in various ways. These ways are characterize by the typ of the
simulation function. Most of new blocks use type 4 or type 5. Type 4 is used for
programs written in C and type 5 is used for programming in Scilab. In the C
programmation case, the function must have two inputs arguments: a structure
containing information on the block and the flag.

#include "scicos_block4.h"

void sim func(scicos block *block,int flag)

6

{

}

We will briefly introduce, in the next paragraphs, the two parameters of the
computational functions, as well as a set of macros used in almostly all of the
new computational functions.

2.2.1 flag

The computational function performs different jobs according to the flag pa-
rameter. Till now the following jobs exists in the simulation:

• Initialization: At the begining of the simulation, this job is called under
flag=4 to initialize continuous and discrete states (if necessary). It also
initialize the output port of the block. This function is not used in all of
the blocks, it is used for blocks that needed dynamically allocated memory
(the allocation is done under this flag), for blocks that read and write
data from files, for opening a file, or by the scope to initialize the graphics
window.

• Reinitialization: This job is called under flag=6. In this case, the values
of the inputs are available and the function create a fixed point iteration
for the outputs of the block. On this occasion, the function can also
reinitialize its initial states.

• Outputs update: This job is called when flag=1, it is called only if the
block has regular ports. In this case, the simulator requests the values
of the outputs. The computational function uses the information given
by the block structure to calculate the output and put it at the address
given by the block structure. If the block contains different mode then the
calculation depends on the simulation phase.

• States update: This job is called when flag=2, it is called only if the
block has event input. In this case, the computation function update the
value of the continuous or discrete state. This flag is called only if the
block has an event activation (nevprt 6= 0, or an internal zero-crossing
(nevprt= −1). In the second case a vector jroot specifies which surface
has been crossed and in which direction. for exemple, if the ith entry of
jroot is equal to 0 it means that there is no crossing, whereas if it is equal
to +1 (respectively −1), then the crossing is with a positive (respectivly
negative) slope.

• Integrator calls: This job is called when flag=0. In this case, the simu-
lation function computes the derivative state ẋ and place its value in the
address provided by the block’s structure.

• Mode and zero-crossing: This job is called when flag=9. In this case,
we set the mode and evaluate the zero-crossing. To set the mode, informa-
tion about the nonsmoothness of the model must be given to the solver.

7

flag inputs outputs description

0 t, nevprt, x, z, inptr,
mode, phase

xd compute the derivative
of continuous time state

1 t, nevprt, x, z, inptr,
mode, phase

outptr compute the outputs of
the block

2 t, nevprt>0, x, z, inptr x, z update states due to ex-
ternal activation

2 t, nevprt=-1, x, z,
inptr, jroot

x, z update states due to in-
ternal zero-crossing

3 t, x, z, inptr, jroot evout program activation out-
put delay times

4 t, x, z x, z, outptr initialize states and other
initializations

5 x, z, inptr x, z, outptr final call to block for end-
ing the simulation

6 t, nevprt, x, z, inptr,
mode, phase

x, z,outptr reinitialization
(if needed).

7 only used for internally
implicit blocks

9 t, phase=1, nevprt, x, z,
inptr

g, mode compute zero-crossing
surfaces and set modes

9 t, phase=2, nevprt, x, z,
inptr

g compute zero-crossing
surfaces

Table 1: This tables illustrates the jobs that the computational function must
perform for different flags.

Let us consider the case of the of the abs block. In this case we have
two modes, the first one is when the output is equal to the input, and the
second one is when it is the input’s negative. The nonsmoothness point
zero is detected by the zero-crossing and the model is updated after such
detection. the number of zero-crossing may be greater than the number
of modes (i.e zcross block).

• Events schedular: This job is called when flag=3. In this case, the
simulator updates the next event output time of the block.

• Ending: This job is called when flag=5 at the end. This case is used to
close files opened by the block at the begining or during the simulation,
to free the allocated memory,etc..

Table 1 summarizes the role of each flag. In most cases, the computation
functions are not called with all flags. For example, a block with no event port
is not called under flag=2.

8

In addition to the block structure, the computational function recieves inputs
from the following functions:

• double get scicos time(): returns the current time t.

• int get phase simulation(): returns the simulation phase (1 or 2).

• int get block number(): returns the block number in the structure
%cpr.

• void set block error(int): used by the block to signal an error to the
simulator.

• void do cold restart(): used to force a cold restart of the numerical
solver (almost never used since Scicos determines automatically when cold
restart is needed).

• void set pointer xproperty(int* pointer): used only for internally
implicit blocks to designate which states are algebraic and which ones are
differential.

• void *scicos malloc(size t): used to allocate memory for workspace if
needed.

• void scicos free(void *p): used to free allocated memory.

• double Get Jacobian parameter(void)

• double Get Scicos SQUR(void)

• void Set Jacobian flag(int flag)

These functions are defined in scicos block4.h in the ’routine/scicos/’
directory.

2.2.2 Block Structure

In C programming, the block structure is defined as follows:

/* scicos block structure definition */
typedef struct {

int nevprt; /* Binary coding of activation inputs, -1 for internal activation */
voidg funpt ; /* Pointer to the computational function */
int type; /* Type of the computational function, in this case type4 */
int scsptr; /* Not used for C programming */
int nz; /* Size of discrete-time state vector */
double *z; /* Vector of discrete-time state */
int noz; /* Number of object states */
int *ozsz; /* Vector of sizes of object states */
int *oztyp; /* Vector of data types of object states */
void **ozptr; /* Table of pointers to object states */
int nx; /* Size of continuous-time state vector */
double *x; /* Vector of continuous-time state */

9

double *xd; /* Vector of the derivative of the continuous-state, same size nx */
double *res; /* Only used for internally implicit blocks, vector of size nx */
int nin; /* Number of regular input ports */
int *insz; /* Vector of sizes of regular input ports*/
void **inptr; /* Tables of pointer to the regular input ports */
int nout; /* Number of regular output ports */
int *outsz; /* Vector of sizes of regular output ports */
void **outptr; /* Tables of pointers to the regular output ports */
int nevout; /* Number of event output ports */
double *evout; /* Delay time of output events */
int nrpar; /* Size of real parameters vector */
double *rpar; /* Vector of real parameters */
int nipar; /* Size of integer parameters vector */
int *ipar; /* Vector of integer parameters */
int nopar; /* Number of object parameters */
int *oparsz; /* Vector of sizes of object parameters */
int *opartyp; /* Vector of data types of object parameters*/
void **oparptr; /* Table of pointers to the object parameters */
int ng; /* Size of zero-crossing surfaces vector*/
double *g; /* Vector of zero-crossing surfaces*/
int ztyp; /* Boolean, True only if the block may have zero-crossing surfaces */
int *jroot; /* Vector of size ng indicates the presence and the direction of the crossing */
char *label; /* Block label */
void **work; /* Table of pointers to the block workspace (if allocation done by the block) */
int nmode; /* Size of modes vector */
int *mode; /* Vector of modes */

} scicos block;

2.2.3 Useful macros for C programming

Almostly all the new computational functions of type 4 use at least one of the
following macros:

/* scicos block macros definition :*/
GetNin(blk) /* Get Number of Regular Input Port */
GetInPortPtrs(blk,x) /* Get Regular Input Port Pointer of port number x */
GetNout(blk) /* Get Number of Regular Output Port */
GetOutPortPtrs(blk,x) /* Get Regular Output Port Pointer of port number x */
GetInPortRows(blk,x) /* Get number of Rows (first dimension) of Regular Input Port number x */
GetInPortCols(blk,x) /* Get number of Columns (second dimension) of Regular Input Port number x */
GetInPortSize(blk,x,y) /* Get Regular Input Port Size */

/* usage :
* GetInPortSize(blk,x,1) : get first dimension of input port number x
* GetInPortSize(blk,x,2) : get second dimension of input port number x
*/

GetInType(blk,x) /* Get Type of Input Port */
GetOutPortRows(blk,x) /* Get number of Rows (first dimension) of Regular Output Port number x */
GetOutPortCols(blk,x) /* Get number of Columns (second dimension) of Regular Output Port number x */
GetOutPortSize(blk,x,y) /* Get Regular Output Port Size */
GetOutType(blk,x) /* Get Type of Output Port */
GetRealInPortPtrs(blk,x) /* Get Pointer of Real Part of Regular Input Port */
GetImagInPortPtrs(blk,x) /* Get Pointer of Imaginary Part of Regular Input Port */
GetRealOutPortPtrs(blk,x) /* Get Pointer of Real Part of Regular Output Port */
GetImagOutPortPtrs(blk,x) /* Get Pointer of Imaginary Part of Regular Output Port */
Getint8InPortPtrs(blk,x) /* Get Pointer of int8 typed Regular Input Port */
Getint16InPortPtrs(blk,x) /* Get Pointer of int16 typed Regular Input Port */

10

Getint32InPortPtrs(blk,x) /* Get Pointer of int32 typed Regular Input Port */
Getuint8InPortPtrs(blk,x) /* Get Pointer of uint8 typed Regular Input Port */
Getuint16InPortPtrs(blk,x) /* Get Pointer of uint16 typed Regular Input Port */
Getuint32InPortPtrs(blk,x) /* Get Pointer of uint32 typed Regular Input Port */
Getint8OutPortPtrs(blk,x) /* Get Pointer of int8 typed Regular Output Port */
Getint16OutPortPtrs(blk,x) /* Get Pointer of int16 typed Regular Output Port */
Getint32OutPortPtrs(blk,x) /* Get Pointer of int32 typed Regular Output Port */
Getuint8OutPortPtrs(blk,x) /* Get Pointer of uint8 typed Regular Output Port */
Getuint16OutPortPtrs(blk,x) /* Get Pointer of uint16 typed Regular Output Port */
Getuint32OutPortPtrs(blk,x) /* Get Pointer of uint32 typed Regular Output Port */
GetNipar(blk) /* Get Number of Integer Parameters */
GetIparPtrs(blk) /* Get Pointer of Integer Parameters */
GetNrpar(blk) /* Get Number Real Parameters */
GetRparPtrs(blk) /* Get Pointer of Real Parameters */
GetWorkPtrs(blk) /* Get Pointer of Work */
GetNdstate(blk) /* Get Number of Discrete state */
GetDstate(blk) /* Get Pointer of Discrete state */
GetNev(blk) /* Get Nevprt of the block */
GetNopar(blk) /* Get Number of Object Parameters */
GetOparType(blk,x) /* Get Type of Object Parameters */
GetOparSize(blk,x,y) /* Get Size of Object Parameters */
GetOparPtrs(blk,x) /* Get Pointer of Object Parameters */
GetRealOparPtrs(blk,x) /* Get Pointer of Real Object Parameters */
GetImagOparPtrs(blk,x) /* Get Pointer of Imaginary Part of Object Parameters */
Getint8OparPtrs(blk,x) /* Get Pointer of int8 typed Object Parameters */
Getint16OparPtrs(blk,x) /* Get Pointer of int16 typed Object Parameters */
Getint32OparPtrs(blk,x) /* Get Pointer of int32 typed Object Parameters */
Getuint8OparPtrs(blk,x) /* Get Pointer of uint8 typed Object Parameters */
Getuint16OparPtrs(blk,x) /* Get Pointer of uint16 typed Object Parameters */
Getuint32OparPtrs(blk,x) /* Get Pointer of uint32 typed Object Parameters */
GetNoz(blk) /* Get Number of Object State */
GetOzType(blk,x) /* Get Type of Object State */
GetOzSize(blk,x,y) /* Get Size of Object State */
GetOzPtrs(blk,x) /* Get Pointer of Object State */
GetRealOzPtrs(blk,x) /* Get Pointer of Real Object State */
GetImagOzPtrs(blk,x) /* Get Pointer of Imaginary Part of Object State */
Getint8OzPtrs(blk,x) /* Get Pointer of int8 typed Object State */
Getint16OzPtrs(blk,x) /* Get Pointer of int16 typed Object State */
Getint32OzPtrs(blk,x) /* Get Pointer of int32 typed Object State */
Getuint8OzPtrs(blk,x) /* Get Pointer of uint8 typed Object State */
Getuint16OzPtrs(blk,x) /* Get Pointer of uint16 typed Object State */
Getuint32OzPtrs(blk,x) /* Get Pointer of uint32 typed Object State */
GetSizeOfOz(blk,x) /* Get The sizeof of the Object State */
GetSizeOfOpar(blk,x) /* Get The sizeof of the Object Parameters */
GetSizeOfOut(blk,x) /* Get The sizeof of the Output */
GetSizeOfIn(blk,x) /* Get The sizeof of the Input */
SCSREAL N /* Corresponds to the Scilab real number (10) */
SCSCOMPLEX N /* Corresponds to the Scilab complex number (11) */
SCSINT N /* Corresponds to the Scilab integer number (80) */
SCSINT8 N /* Corresponds to the Scilab int8 number (81) */
SCSINT16 N /* Corresponds to the Scilab int16 number (82) */
SCSINT32 N /* Corresponds to the Scilab int32 number (84) */
SCSUINT N /* Corresponds to the Scilab unsigned integer number (800) */
SCSUINT8 N /* Corresponds to the Scilab uint8 number (811) */
SCSUINT16 N /* Corresponds to the Scilab uint16 number (812) */
SCSUINT32 N /* Corresponds to the Scilab uint32 number (814) */
SCSUNKNOW N /* Corresponds to the Scilab unknown number (-1) */

11

SCSREAL COP /* Corresponds to the C real operator (double) */
SCSCOMPLEX CO /* Corresponds to the C complex operator (double) */
SCSINT COP /* Corresponds to the C integer operator (int) */
SCSINT8 COP /* Corresponds to the C int8 operator (char) */
SCSINT16 COP /* Corresponds to the C int16 operator (short) */
SCSINT32 COP /* Corresponds to the C int32 operator (long) */
SCSUINT COP /* Corresponds to the C unsigned integer operator (unsigned int) */
SCSUINT8 COP /* Corresponds to the C uint8 operator (unsigned char) */
SCSUINT16 COP /* Corresponds to the C uint16 operator (unsigned short) */
SCSUINT32 COP /* Corresponds to the C uint32 operator (unsigned long) */
SCSUNKNOW COP /* Corresponds to the C unknown operator (double) */

2.2.4 Examples

A simple example of a computational function that shows how to use the C
macros is one of the computational functions of the SUMMATION block.

#include <math.h>
#include "scicos_block4.h"

#include <stdio.h>
extern int sciprint();
void summation ui16e(scicos block *block,int flag)
{
if((flag==1)|(flag==6)) {

int j,k;
int nu,mu,nin;
unsigned short *y;
int *ipar;
double v,l;
unsigned short *u;

y=Getuint16OutPortPtrs(block,1);
nu=GetInPortRows(block,1);
mu=GetInPortCols(block,1);
ipar=GetIparPtrs(block);
nin=GetNin(block);
l=pow(2,16);
if (nin==1){
v=0;
u=Getuint16InPortPtrs(block,1);
for (j=0;j<nu*mu;j++) {
v=v+(double)u[j];

}
if ((v>=l)|(v<0))

{sciprint("overflow error");
set block error(−4);
return;}

else y[0]=(unsigned short)v;
}
else {
for (j=0;j<nu*mu;j++) {
v=0;
for (k=0;k<nin;k++) {
u=Getuint16InPortPtrs(block,k+1);
if(ipar[k]>0){

v=v+(double)u[j];

12

}
else{

v=v−(double)u[j];}
}
if ((v>=l)|(v<0))

{sciprint("overflow error");
set block error(−4);
return;}

else y[j]=(unsigned short)v;
}
}
}

}

In this function, we use the C-macros to get the input x, the integer param-
eter ipar, the number of inputs nin, the inputs’ dimensions m, n, and to charge
the output y. In case of overflow, the set block error function is called to
indicate the error. This function is called under flag 1 and flag 6.

We will discuss now another example that calls the computational function
under flag 3. Let us consider the Multi-frequency computational function.

#include "scicos_block4.h"

#if WIN32

#define NULL 0
#endif

void m frequ(scicos block *block,int flag)
{
double *mat;
double *Dt;
double *off;
long *icount;
double t;
long long *counter;
int m;
mat=GetRealOparPtrs(block,1);
Dt=GetRealOparPtrs(block,2);
off=GetRealOparPtrs(block,3);
icount=Getint32OparPtrs(block,4);
m=GetOparSize(block,1,1);
switch(flag)
{
case 4 : {/* the workspace is used to store discrete counter value */

if ((*block−>work=scicos malloc(sizeof(long long int)*2))==NULL) {
set block error(−16);
return;

}
counter=*block−>work;
if (*icount!=0) (*counter)=(int)mat[0];
else *counter=0;
(*(counter+1))=*icount;
break;
}

/* event date computation */
case 3 : {

counter=*block−>work;
t=get scicos time();

13

counter+=(int)mat[(counter+1)]; /*increase counter*/
block−>evout[(int)mat[*(counter+1)+m]−1]=*off+((double)*counter/(*Dt))−t;
(*(counter+1))++;
(counter+1)=(counter+1)%m;
break;
}

/* finish */
case 5 : {

scicos free(*block−>work); /*free the workspace*/
break;
}

default : break;
}

}

This computation function uses the dynamically allocated memory’s function
scicos malloc to charge the workspace with data, and at the end (flag=5), the
function free this memory with the scicos free function. This computational
function uses also the get scicos time() function, to get the current scicos
time and then calculates the next output activation time and charge it in the
block->evout(under flag=3).

block->evout[(int)mat[*(counter+1)+m]-1]=*off+((double)*counter/(*Dt))-t;

where t is the current time. To compute the activation delay you must
always substract the current time.

Another example, a little bit more complicated is the computational function
associated with the ABS block.

#include "scicos_block.h"

#include <math.h>

void absolute value(scicos block *block,int flag)
{
int i,j;
if (flag==1){
if(block−>ng>0){
for(i=0;i<block−>insz[0];++i){
if (get phase simulation()==1) {
if (block−>inptr[0][i]<0){
j=2;

} else{
j=1;

}
}else {
j=block−>mode[i];

}
if (j==1){
block−>outptr[0][i]=block−>inptr[0][i];

} else{
block−>outptr[0][i]=−block−>inptr[0][i];

}
}

}else{
for(i=0;i<block−>insz[0];++i){

14

if (block−>inptr[0][i]<0){
block−>outptr[0][i]=−block−>inptr[0][i];

}else{
block−>outptr[0][i]=block−>inptr[0][i];

}
}

}
}else if (flag==9){
for(i=0;i<block−>insz[0];++i){
block−>g[i]=block−>inptr[0][i];
if (get phase simulation()==1) {
if(block−>g[i]<0){
block−>mode[i]=2;

}else{
block−>mode[i]=1;

}
}

}
}

}

This example is not very simple because this block is nonsmooth and thus
uses modes. Note, however, that the modes are used only if the block generates
continuous-time signals affecting the continuous-time state. The compiler deter-
mines whether this is the case, so the computational function must be prepared
to function both with and without modes. It is the value of block->ng (or
equivalently in this case block->nmode) that determines whether modes should
be used. Note that if block->ng is zero, then a simple absolute value operation
is performed in flag 1 and the block is never called with flag 9.

If, on the other hand, block->ng is not zero, then modes must be used. An
important function to use in this case is get phase simulation. It returns 1 or 2
to specify the simulation phase. If the numerical solver is at work advancing the
time, then the computational function must produce a smooth signal and thus
must use the mode to generate its output. When get phase simulation returns
1, then the output must be computed normally by computing the absolute value
of the input. In the flag 9 case, the zero-crossing surface is computed all the
time, but the mode is set only in simulation phase 1.

Note that using modes in this case means that during the simulation, the
output of the ABS block can become negative because at zero the solver has to
step back and forth for pinpointing the zero-crossing. In some cases, this could
be a problem, for example, if the ABS block is followed by a SQRT block that
computes the square root. It is for this reason that in the ABS block we have
the option of using, or not using, zero-crossings (modes). This is true for most
blocks using modes.

2.2.5 Scilab computational function

This function is called when type is equal to 5. As input’s arguments, it uses
the same block structure as the type 4, and the flag. The fields of block are:

15

scicos_block nevprt funpt type scsptr nz z noz ozsz oztyp ozptr

nx x xd res nin insz inptr nout outsz outptr nevout evout

nrpar rpar nipar ipar nopar oparsz opartyp oparptr ng g ztyp

jroot label work nmode mode

In this type block.nz, block.nx,etc... gives the size of the memory used by the
Scilab object. It doesn’t gives the size of the vector but rather the size of the
vector +2. For this reason, it is recomended to use the Scilab command size

to calculates the size of the vector. For example:

nz=size(block.z)

The second argument flag is a scalar and has the same role as flag in C pro-
gramming. The type 5 programation has also very important input functions
to obtain additional operation. These functions are defined as follows:

• curblock(): returns the current block number in the structure %cpr.

• scicos time(): gives the current time.

• phase simulation(): returns the simulation phase.

• set blockerror(i): set the error flag if the computational function en-
counters an error.

• pointer xproperty: used for internally implicit blocks.

A simple example of programming with type 5 is the sin5 computational func-
tion.

function block=lcm5(block,flag)

if flag==1 then

for j=1:(block.insz(1)*block.insz(1+block.nin))

v=[];

for i=1:block.nin

v=[v;block.inptr(i)(j)]

end

block.outptr(1)(j)=lcm(v);

end

end

endfunction

2.3 Saving and using the new block

After creating the computational and interfacing function, how to use it in your
diagram. Consider that the computational function of your block is sim func.c

and the the interface function is MYBLK.sci. First of all, you have to charge the
interfacing function. To do so, you can use the getf scilab function. Then you
have to compile and link your computational function, another scilab function
allow you to do it: ilib for link.

16

--> getf(’.../MYBLK.sci’);

--> ilib_for_link(’sim_func’,’sim_func.o’,[],’c’);

--> exec loader.sce

After linking the two functions, you can use your block in a diagram by using the
AddNewBlock menu by giving the name of the corresponding interface function.

3 Scicos structure

A lot of macros and functions used in the previous paragraph are very strange
for users who are not adapted to Scicos. For this reason, we will give an overview
on how the Scicos compiler and editor are implemented. Our objective in this
section is to give enough information so that the code will be comprehensible.
This requires explaining the Data structures used and giving the structure of
the main programs.

The data structures used in Scicos are all Scilab variables. Thus they can be
examined and altered using standard Scilab functions. There are in particular
two variables associated with a Scicos diagram that are of great importance:

• scs m contains all the information concerning the Scicos diagram. It is
constructed by the editor.

• %cpr contains the result of the compilation; it is used by the simulator.

We start with a brief presentation of the editor and the way scs m is con-
structed. We then look at the compilation phase, where scs m is used to obtain
%cpr. %cpr is used by the simulator to perform simulation.

3.1 Scicos Editor

The Scicos editor is written entirely in the Scilab language, including the graph-
ical user interface, which uses standard Scilab graphics. This facilitates cus-
tomization of the editor by the user. This section provides the necessary infor-
mation.

3.1.1 Main Editor Function

The main Scilab function implementing the Scicos editor is scicos, which can
be found in file SCI/macros/auto/scicos.sci. This function takes as input
argument a Scicos diagram (scs m) and opens it. Invoked without any argument,
it opens an empty diagram. This function is called recursively when a Super
block is opened.

The Scicos editor can be parameterized by initializing the following variables:

• scicos pal: list of palettes. An n × 2 matrix of strings, where the first
column contains the names of the palettes and the second the file (.cos
or .cosf) in which the palette is defined. In fact, a palette is nothing but
a Scicos diagram.

17

• %scicos menu: Scicos menus. A Scilab list including vectors of strings,
where the first element of each vector contains the name of the menu, and
the rest, the corresponding items of the menu. Each item corresponds to
an operation (such as move, copy, save) and has a corresponding Scilab
function.

• %scicos short: keyboard shortcuts. An n×2 matrix of strings, where the
first column contains the character to be used for the shortcut (only lower-
case characters can be used) and the second, the name of an operation,
which must be an item in one of the menus.

• %scicos help: manual pages associated with operations. A Scilab tlist

where for each operation, a vector of strings contains the corresponding
manual page.

• %scicos display mode: this scalar is used to specify whether backstoring
for graphical display of the diagrams should be used by the editor.

• modelica libs: a vector of strings containing the list of directories (full
path), where implicit Modelica blocks are defined.

• scicos pal libs: a vector of strings containing the list of directories
inside
SCI/macros/scicos blocks to be loaded. These directories contain the
interfacing functions of the blocks in Scicos palettes. The user should not,
in general, edit this variable.

These variables are initialized by the function initial scicos tables, which
can be found in the directory SCI/macros/util. This function is executed as
a script by scilab.star, which is executed at the startup of Scilab. They can
be modified by the user subsequently.

The function scicos contains the main event loop of the editor. When an
item in one of the menus is invoked to perform an operation, scicos calls the
corresponding Scilab function. The name of the Scilab function is derived from
the name of the menu item by removing special characters “/”, “.”, and “-”,
and adding a trailing “ ”. For example, the function corresponding to the item
Open/set in the Object menu is OpenSet . Functions associated with editor
operations have no input-output arguments and are executed as scripts. Scicos
comes with default menus providing many elementary editor operations. The
associated functions can be found in the directory SCI/macros/scicos.

3.1.2 Structure of scs m

scs m is a Scilab object of type diagram having two entries:

• props: Diagram properties. Scilab object of type params,

• objs: list of objects included in the Scicos diagram.

18

Diagram Properties params

The diagram properties are:

• wpar: This vector is not currently used. It may be used in the future to
code window sizes of the editor.

• title: A string containing the name of the diagram. The default value
is "Untitled"

• tol: A vector containing simulation parameters including various toler-
ances used by the solver:

– atol: Integrator absolute tolerance for the numerical solver.

– rtol: Integrator relative tolerance for the numerical solver.

– ttol: Tolerance on time. If an integration period is less than ttol,
the numerical solver is not called.

– deltat: Maximum integration time interval. If an integration period
is larger than deltat, the numerical solver is called more than once
in such a way that for each call the integration period remains below
deltat.

– scale: Real-time scaling; the value 0 corresponds to no real-time
scaling. It associates a Scicos simulation time to the real time in
seconds. A value of 1 means that each Scicos unit of time corresponds
to one second.

– solver: Choice of numerical solver. The value 0 implies LSODAR and
100 implies DASKR.

– hmax: Maximum step size for the numerical solver. 0 means no limit.

The default value is [0.0001,1.000E-06,1.000E-10,100001,0,0].

• tf: Final integration time. The simulation stops at this time. The default
value is 100000.

• context: A vector of strings containing Scilab instructions defining vari-
ables to be used inside block GUIs. All valid Scilab instructions can be
used but not comments.

• void1: Not used.

• options: Scilab object of type scsopt defining graphical properties of
the editor such as background color and link color. The fields are the
following:

– 3D: A list with two entries. The first one is a boolean indicating
whether or not blocks should have 3D aspect. The second entry
indicates the color in the current colormap to be used to create the 3D
effect. The default is 33, which corresponds to gray added by Scicos

19

to the standard colormap, which contains 32 colors. The default
value is list(%t,33).

– Background: Vector with two entries: background and foreground
colors. The default value is [8,1].

– Link: Default link colors for regular and activation links. These
colors are used only at link construction. Changing them does not
affect already constructed links. The default value is [1,5], which
corresponds to black and red if the standard Scilab colormap is used.

– ID: A list of two vectors including font number and sizes. The default
value is list([5,1],[4,1]).

– Cmap: An n× 3 matrix containing RGB values of colors to be added
to the colormap. The default value is [0.8,0.8,0.8], i.e., the color
gray.

• void2: Not used .

• void3: Not used.

• doc: Used for documenting the diagram.

Diagram Content

The field objs contains a Scilab list of the objects within the diagram. The
objects can be of type Block, Link, or Text. A Block can be a basic block or
a Super block.

Scicos Block It is a structure including the following fields.

• graphics: Scilab object of type graphics including graphical information
concerning the features of the block. The fields are:

– orig: Vector [xo,yo], where xo is the x coordinate of the block
origin and yo is the y coordinate of the block origin.

– sz: Vector [w,h], where w is the block width and h the block height.

– flip: Boolean indicating block orientation. It is used to switch the
ports on the lef- hand side and those on the right-hand side of the
block.

– exprs: A vector of strings including formal expressions (usually in-
cluding numbers and variable names) used in the dialog of the block.

– pin: Vector with pin(i), the number of the link connected to the
ith regular input port (counting from one), or 0 if this port is not
connected.

– pout: Vector with pout(i), the number of the link connected to the
ith regular output port (counting from one), or 0 if this port is not
connected.

20

– pein: Vector with pein(i), the number of the link connected to
the ith event input port (counting from one), or 0 if this port is not
connected.

– peout: Vector with peout(i), the number of the link connected to
the ith event output port (counting from one), or 0 if this port is
not connected.

– gr i: Vector of strings including Scilab graphics expressions for
drawing block’s icon.

– id: A string including an identification for the block. The string is
displayed underneath the block in the diagram.

– in implicit: A vector of strings including "E" and "I". E and I

stand respectively for explicit and implicit port, and this vector indi-
cates the nature of each input port. For regular blocks (not implicit),
this vector is empty or contains only E’s.

– out implicit: Similar to in implicit but for the output ports.

• model: Scilab object of type model including the following fields.

– sim: A list containing two elements. The first element is a string
containing the name of the computational function (C, Fortran, or
Scilab). The second element is an integer specifying the type of the
computational function. Currently type 4 and 5 are used, but older
types continue to work to ensure backward compatibility.

– in: A vector specifying the number and size of the first dimension
of regular inputs.

– in2: A vector specifying the number and size of the second dimension
of regular inputs. in with in2 formed the regular input sizes matrices.

– intyp: A vector specifying the types of regular inputs. Its sizes is
equal to the sizes of in.

– out: A vector specifying the number and size of the first dimension
of regular outputs.

– out2: A vector specifying the number and size of the second dimen-
sion of regular outputs. out with out2 formed the regular output sizes
matrices.

– outtyp: A vector specifying the types of regular outputs. Its sizes
is equal to the sizes of out.

– evtin: A vector specifying the number and sizes of activation inputs.
Currently activation ports can be only of size one.

– evtout: A vector specifying the number and sizes of activation out-
puts.

– state: Vector containing initial continuous-time state.

– dstate: Vector containing initial discrete-time state.

21

– odstate: List containing initial object discrete-time state.

– rpar: Vector of real parameters passed to associated computational
function.

– ipar: Vector of integer parameters passed to associated computa-
tional function.

– ipar: List of object parameters passed to associated computational
function.

– blocktype: It can be set to c or d indifferently for regular blocks.
x is used if we want to force the computational function to be called
during the simulation phase even if the block does not contribute to
computation of the state derivative.

– firing: Vector of initial event firing times of size equal to the num-
ber of activation output ports. A value ≥ 0 programs an activation
(event) at the corresponding port to be fired at the specified time.

– dep ut: Boolean vector [timedep udep].

∗ timedep boolean: true if block is always active.

∗ udep boolean: true if block has direct feed-through, i.e., at least
one of the outputs depends directly (not through the states)
on one of the inputs. In other words, when the computational
function is called with flag 1, the value of an input is used to
compute the output.

– label: A string. The label can be used to identify a block in order
to access or modify its parameters during simulation.

– nzcross: Number of zero-crossing surfaces.

– nmode: Number of modes. Note that this gives the size of the vector
mode and not the total number of modes in which a block can operate
in. Suppose a block has 3 modes and each mode can take two values,
then the block can have up to 23 = 8 modes.

– equations: Used in case of Implicit blocks.

• gui: The name of the Scilab GUI function associated with the block.

• doc: Used for documentation of the block.

Scicos Link. It is a Scilab list including the following fields:

• xx: A vector. A link is defined as a polyline line. xx defines the x-
coordinate of the points characterizing the polyline.

• yy: A vector having the same size as xx. It defines the y-coordinate of
the points characterizing the polyline.

• id: A string corresponding to the name of the function drawing the link.
Default value is "drawlink".

22

• thick: Vector of size two defining line thickness.

• ct: A vector. The first entry designates the color, and the second, the
nature. The second entry is 1 for a regular link, −1 for an activation link,
and 2 for an implicit link.

• from: Vector of size three including the block number, port number, and
port type (0 for output, 1 for input) at the origin of the link. Note that
the third entry may be 1 if the link is implicit; otherwise it is zero.

• to: Vector of size three including the block number, port number, and
port type at the destination of the link.

Once the diagram has been successfully edited, scs m can be passed on to
the compiler.

3.2 Scicos Compiler

Scicos diagram compilation is done in two stages. These two stages are imple-
mented by the Scilab functions c pass1 and c pass2.

3.2.1 First Compilation Stage

The first stage of the compilation consists in removing the hierarchy from the
diagram and constructing a flat description. This is done by c pass1, which
has the following calling sequence:

[blklst,cmat,ccmat,cor,corinv,ok,flgcdgen,scs_m,freof]=c_pass1(scs_m,flgcdgen)

The inputs of this function are defined by:

• scs m: The structure of the diagram given by the editor.

• flgcdgen: This is used only when the compiler is called with the Generation
Code, indicating the number of event input of the Super block. In other
cases, this flag take the value −1.

The outputs are defined by:

• blklst: is a list of blocks present in the diagram. It contains block
information relevant to simulation. Block properties such as color, icon,
size, and location, which are not useful for simulation, have been stripped.

• cmat: is an n×6 matrix. Each row corresponds to a regular link and con-
tains the block number, port number, and port type (explicit or implicit)
of the source block and the same information regarding the destination
block.

• ccmat: is an n × 4 matrix. Each row corresponds to an activation link
and contains the block number and port number of the source block and
the block number and port number of the destination block.

23

• cor and corinv are correspondence tables (coded as lists) used to find the
correspondence between blocks in blklst and scs m.

• flgcdgen: It is used only when the compiler is called with the Generation
Code. It is incremented if there is at least one SampleCLK in the super
block’s diagram.

• scs m: This variable is modified only when the compiler is called with
the Generation Code and the super block’s diagram contains at least one
SampleCLK

• freof: This variable is modified only when the compiler is called with
the Generation Code and the super block’s diagram contains at least one
SampleCLK, it is a vector composed by the frequency and the offset of the
major SampleCLK.

3.2.2 Second Compilation Stage

The second stage is done by the main compilation function c pass2, which
constructs all the scheduling tables and other information needed for simulation
and code generation. The calling sequence is as follows:

%cpr=c_pass2(blklst,connectmat,ccmat,cor,corinv)

The input arguments are all generated by c pass1. connectmat is simply
cmat, but the third and last columns have been removed. The output %cpr is a
Scilab structure containing all the information needed by the simulator. We will
not explain how c pass2 computes %cpr. Instead we give a detailed description
of %cpr in the next section.

3.2.3 Structure of %cpr

The Scilab object %cpr contains the result of the compilation. The simulator
uses only %cpr. It is thus important for an advanced user to understand how
compilation results are coded in %cpr.

• state: Scilab object of type xcs. It contains all the states of the model,
that is, everything than can evolve during the simulation. It contains in
particular

– x: The continuous-time state, which is obtained by concatenating
the continuous-time states of all the blocks.

– z: The discrete-time state, which is obtained by concatenating the
discrete-time states of all the blocks.

– oz: The object discrete-time state, which is obtained by concatenat-
ing the object discrete-time states of all the blocks.

– iz: Vector of size equal to the number of blocks. If a block needs
to allocate memory at initialization, the associated pointer is saved
here.

24

– tevts: Vector of size equal to the number of activation sources. It
contains the scheduled times for programmed activations.

– evtspt: Vector of size equal to the number of activation sources. It
is an event scheduler.

– pointi: The number of the next programmed event.

– outtb: Vector containing all the link memories. Link memories hold
block output values.

• sim: Scilab object of type scs. It contains information that does not
evolve during the simulation.

– funs: A vector containing the name of the computational functions.

– xptr: A vector pointer to the continuous time state x. The continuous-
time state of block i is
%cpr.state.x(%cpr.sim.xptr(i):%cpr.sim.xptr(i+1)-1).

– zptr: A vector pointer to the discrete-time state z, which is similar
to xptr.

– ozptr: A vector pointer to the object discrete-time state z, which is
similar to xptr.

– zcptr: A vector pointer to the zero-crossing surfaces.

– inpptr: A vector pointer used to find the link number and conse-
quently the part of outtb corresponding to a given input port.

– outptr: Similar to inpptr but for output ports.

– inplnk: Similar to inpptr.

– outlnk: Similar to inplnk but for output ports.

– rpar: Vector of real parameters that is obtained by concatenating
the real parameters of all the blocks.

– rpptr: A vector pointer to real parameters rpar. The real parame-
ters of block i are
%cpr.sim.rpar(%cpr.sim.rpptr(i):%cpr.sim.rpptr(i+1)-1).

– ipar: Vector of integer parameters, similar to rpar.

– ipptr: A vector pointer to integer parameters, similar to rpptr.

– opar: List of object parameters, similar to rpar.

– opptr: A vector pointer to object parameters, similar to rpptr.

– clkptr: A vector pointer to output activation ports.

– ordptr: A vector pointer to ordclk designating the part of ordclk
corresponding to a given activation.

– execlk: Not used.

– ordclk: An n × 2 matrix associated to blocks activated by output
activation ports. The first column contains the block number, and
the second, the event code by which the block should be called.

25

– cord: An n× 2 matrix associated to always active blocks. The first
column contains the block number, and the second, the event code
by which the block should be called.

– oord: Subset of cord, which affects the continuous-time state deriva-
tive.

– zord: Subset of cord, which affects the computation of zero-crossing
surfaces.

– critev: A vector of size equal to the number of activations and
containing zeros and ones. The value one indicates that the activation
is critical in the sense that the continuous-time solver must be cold
restarted.

– nb: Number of blocks. Note that the number of blocks may differ
from the original number of blocks in the diagram because c pass2

may duplicate some conditional blocks.

– ztyp: A vector of size equal to the number of blocks. A 1 entry
indicates that the block may have zero-crossings, even if it doesn’t in
the context of the diagram. Usually not used by the simulator.

– nblk: Not used. Set to nb.

– ndcblk: Not used.

– subscr: Not used.

– funtyp: A vector of size equal to the number of blocks indicating the
type of the computational function of the block. Block type can be 0
through 5. Currently only type 4 (C language) and type 5 (Scilab
language) computational functions should be used. But older blocks
can also be used.

– iord: An n× 2 matrix associated to blocks that must be activated
at the start of the simulation. This includes blocks inheriting from
constant blocks and always active blocks.

– labels: A string vector of size equal to the number of blocks con-
taining block labels.

– modptr: A vector pointer to the block modes.

• cor: Scilab list with a hierarchy identical to that of the original diagram
and including block numbers in the compiled structure. It allows finding
block number in %cpr from position in scs m.

• corinv: Scilab list containing vectors. It allows finding position in scs m

from block number in %cpr.

3.2.4 Partial Compilation

To avoid long time compilation, Scicos does a partial compilation if minor modi-
fications are made in a compiled diagram. The partial compilation is performed

26

when changing block’s paramters doesn’t affect the scheduling tables, which
means that some elements of %cpr such as %cpr.sim.opar are updated without
recomputing scheduling tables %cpr.sim.ordclk, which can be time-consuming.

Anytime a block parameter is modified, Scicos determines the effect of the
modification on the compiled structure by setting the level of compilation re-
quired. This level is coded in the Scilab variable needcompile. Four different
levels of compilation are used in scicos:

• needcompile= 0: This level is coded for a freshly compiled diagram.

• needcompile= 1: This level is coded when a parameter changes the sizes
of the link. In this case, pointer vectors may need to be recomputed.
However, scheduling tables remain valid and are not recomputed.

• needcompile= 2: This level is coded when the modification is more com-
plex and involves, for example, preprogrammed activation signals, then it
still may not be necessary to recompute scheduling tables. In this case,
Scilab function c pass3 recomputes all the entries from scs m, except for
scheduling tables, before simulation.

• needcompile= 4: This level is coded when a diagram is not yet compiled,
or when it is absolutely necessary, for example following any operation
modifying the diagram (adding or deleting a block for example).

In many cases, changing a block parameter, for example the gain value of the
Gain block, does not affect needcompile. The block is simply placed in the
variable newparameters so that the new parameters of the block can be copied
from scs m into %cpr before simulation. This is done by the Scilab function
modipar. To be note that if the diagram contains

The Scilab function do update handles the partial compilation. Note that
a recompilation can always be imposed by the user by choosing the menu item
Compile.

3.3 Scicos Simulator

The interface to the Scicos simulator in Scilab is the function scicosim. This
function is used to initialize, run, and end Scicos simulations. These operations
are done by the function do run (in the SCI/macros/scicos directory), which
is called when the user runs a simulation in Scicos.

The Scicos simulator is a complex C program. We do not study it here.
The simulation functions are in the file SCI/routines/scicos/scicos.c. The
main function is scicos, which calls the routines cosini, cossim, and cosend

depending on whether initialization, simulation, or ending has been requested.

3.4 Conclusion

In this report, we explain the construction of a new basic scicos block by in-
troducing its interface and computational function. Then we give a brief de-
scription on the structure of Scicos describing it’s editor and compilor. The

27

informations of this report are basicly taken from the book Modeling and

Simulation in Scilab/Scicos writen by Stephen L. Campbell, Jean-Philippe

Chancelier and Ramine Nikoukhah, published by Springer Science+Business

Media.Inc.2006.

28

