Scicos Diagram
eng - fr


2D bifurcation of the logistic map

\epsfig{file=logistique_bif_2D_cos.eps,height=8cm}

Description

The logistic equation is defined by the one-dimensional discrete-time system given by :

$\displaystyle x\left[k+1\right]=f\left(x\left[k\right],R\right)=4 R x\left[k\right]\left(1-x\left[k\right]\right)
$

This application should be modelled by the following block diagram Fig.[*], where output of the non-linear function F(t) is feed-backed to the input via a delayed block.
\begin{figure}\centering
\scalebox{0.7}{%
\input{logistic_buf_fig.pstex_t}}
\end{figure}
Figure : Block diagram of logistic application

Context


Te = 1
ci=0.5
Tfin = 0.5e5*Te

 

Scope Results

\begin{figure}\begin{center}
\epsfig{file=logistique_bif_2D_scope_1.eps,width=300.00pt}
\end{center}\end{figure}
Figure : Bifurcation diagram

Mod_num blocks

Authors

IRCOM Group Alan Layec