Scicos Diagram
eng - fr


Lorentz's system

\epsfig{file=lorentz_cos.eps,width=400pt}

Description

The Lorentz's system is defined by the following continuous system :

$\displaystyle \frac{dx(t)}{dt}\,=\,a\left(-x(t)+y(t)\right)
$

$\displaystyle \frac{dy(t)}{dt}\,=\,bx(t)-y(t)-x(t)y(t)
$

$\displaystyle \frac{dz(t)}{dt}\,=\,-cx(t)+x(t)y(t)
$

The state variables $ x(t)$, $ y(t)$ and $ z(t)$ are temperature of the air, speed of wind and a third caracteristic which represents the variation of temperature in accord to the altitude.

Context


Tsampl=3e-3
a=10
b=28
c=8/3
ci=[5.5;5;20] 
Tfin=20

Scope Results

\begin{figure}\begin{center}
\epsfig{file=lorentz_scope_1.eps,width=300.00pt}
\end{center}\end{figure}
Figure : (a) Temporal wave forms of state variables
\begin{figure}\begin{center}
\epsfig{file=lorentz_scope_2.eps,width=300.00pt}
\end{center}\end{figure}
Figure : (b) Phase plan

Authors

IRCOM Group Alan Layec