Scicos Diagram
eng - fr


Discrete forced Van Der Pol's system (Euler method)

\epsfig{file=van_der_pol_forc_euler_cos.eps,height=9.5cm}

Description

This system illustrates the use of a single step integrator in order to resolve continuous system. Here the system is resolved with the backward Euler method. The forced Van Der Pol's oscillator is described with the system of state equation :

$\displaystyle \dot{x}\,=\,y
$

$\displaystyle \dot{y}\,=\,\left(1-x^{2}\right)y-x+A\cos\left(z\right)
$

$\displaystyle \dot{z}\,=\,\frac{2\pi}{T}
$

where parameters $ T$ is the period of the driven oscillator and A it's amplitude.

Context


Te=0.01
Tfin=90
ci=[-1;0]
A=0.5;
wo=1.1;
To=2*%pi/wo;

Scope Results

\begin{figure}\begin{center}
\epsfig{file=van_der_pol_forc_euler_scope_1.eps,width=300.00pt}
\end{center}\end{figure}
Figure : (a) Time domain wave forms of state variables
\begin{figure}\begin{center}
\epsfig{file=van_der_pol_forc_euler_scope_2.eps,width=300.00pt}
\end{center}\end{figure}
Figure : (b) Phase plan

Mod_num blocks

See Also

Authors

IRCOM Group Alan Layec