Scicos Diagram
fr - eng


Discrete forced Van Der Pol's system (Euler method)

\epsfig{file=van_der_pol_forc_euler_diagr.eps,height=9.5cm}

Module


Contents

Description

This system do the illustration of the use of a single step integrator in order to solve a continuous system.
Here the system is solved with the backward Euler method. The forced Van Der Pol's oscillator is described with this system of state equation :

\begin{eqnarray}
\dot{x}&=&y\\
\dot{y}&=&\left(1-x^{2}\right)y-x+A\cos\left(z\right)\\
\dot{z}&=&\frac{2\pi}{T}
\end{eqnarray}


where parameters $ T$ is the period of the driven oscillator and $ A$ its amplitude.

Context


Te=0.01
Tfin=90
ci=[-1;0]
A=0.5;
wo=1.1;
To=2*%pi/wo;

Scope Results

\begin{figure}\begin{center}
\epsfig{file=van_der_pol_forc_euler_scope_1.eps,width=300.00pt}
\end{center}\end{figure}
Figure : (a) Time domain waveforms of state variables
\begin{figure}\begin{center}
\epsfig{file=van_der_pol_forc_euler_scope_2.eps,width=300.00pt}
\end{center}\end{figure}
Figure : (b) Phase plan

Used blocks

See Also

Authors

IRCOM Group Alan Layec