Scicos Diagram
fr - eng


Lorentz's system

\epsfig{file=lorentz_diagr.eps,width=400pt}

Module


Contents

Description

The Lorentz's system is defined by the following continuous system :

\begin{eqnarray}
\frac{dx(t)}{dt}&=&a\left(-x(t)+y(t)\right)\\
\frac{dy(t)}{dt}&=&bx(t)-y(t)-x(t)y(t)\\
\frac{dz(t)}{dt}&=&-cx(t)+x(t)y(t)
\end{eqnarray}


The state variables $ x(t)$ , $ y(t)$ and $ z(t)$ are temperature of the air, speed of wind and a third variable which represents the variation of temperature according to the altitude.

Context


Tsampl=3e-3
a=10
b=28
c=8/3
ci=[5.5;5;20] 
Tfin=20

Scope Results

\begin{figure}\begin{center}
\epsfig{file=lorentz_scope_1.eps,width=300.00pt}
\end{center}\end{figure}
Figure : (a) Time domain waveforms of state variables
\begin{figure}\begin{center}
\epsfig{file=lorentz_scope_2.eps,width=300.00pt}
\end{center}\end{figure}
Figure : (b) Phase plan

Authors

IRCOM Group Alan Layec